Femtosecond (FS) laser-stimulated discharges in nanoscale and microscale gaps between etched nanoprobe tip cathodes and gold film anodes were studied experimentally and by particle-in-cell simulation. Experimentally, for appropriate values of gap length, applied potential and laser irradiance, breakdown discharges could be reliably stimulated. Minor cathode tip damage could be observed for FS laser pulses that reliably stimulated discharges, suggesting that laser ablation of the cathode played on important role in stimulation of breakdown discharges in nanoscale gaps. Femtosecond (FS) laser stimulation of electrical discharges in 500 nm gaps excited with DC applied potential was simulated using a particle-in-cell and Monte Carlo collision model. Discharges were predicted to occur at a much lower applied potential with initial laser-ablated particles than for gaps without particles. The applied potentials and laser-ablated particle densities required for breakdown discharges in the simulations were well-correlated to experimental measurements. Threshold applied potential for anode melting was approximately correlated with experimental measurements. The simulations show that laser ablation of the cathode is a viable mechanism of FS laser discharge stimulation and that PIC simulation is able to make approximate predictions of threshold applied potential for anode melting.

1.
Brussaard
G.J.H.
and
Hendriks
J.
2005
Photoconductive switching of a high-voltage spark gap
Appl. Phys. Lett.
86
081503.
2.
Hendriks
J.
,
Broks
B.
,
van der Mullen
J.
and
G.J.H.
Brussaard
2005
Experimental investigation of an atmospheric photoconductively switched high-voltage spark gap
J. Appl. Phys.
98
043309.
3.
Becker
K.H.
,
Schoenbach
K.H.
and
Eden
J.G.
2006
Microplasmas and applications
J. Phys. D: Appl. Phys.
39
R55
R70
4.
Lyuksyutov
S.F.
,
Paramonov
P.B.
,
Dolog
I.
and
Ralich
R.M.
Peculiarities of an anomalous electronic current during atomic force microscopy assisted nanolithography on n-type silicon
2003
Nanotechnology
14
716
721
5.
Enikov
E.T.
and
Palaria
A.
2004
Charge writing in silicon-silicon. dioxide. for nano-assembly
,
Nanotechnology
15
1211
1216
6.
Purcell
S.T.
,
Binh
V.T.
and
Thevenard
P.
2001
Atomic-size metal ion sources: principles and use
,
Nanotechnology
12
168
172
7.
Silver
R.M.
,
Ehrichs
E.E.
and
de Lozanne
A.L.
1987
Direct writing of submicron metallic features with a scanning tunneling microscope
Appl. Phys. Lett.
51
247
249
.
8.
Y.W.
Zhu
,
C.H.
Sow
,
M.C.
Sim
,
G.
Sharma
,
V.
Kripesh
, V.
2007
Scanning localized arc discharge lithography for the fabrication of microstructures made of carbon nanotubes
Nanotechnology
18
(
38
) 385304.
9.
Farson
D. F.
,
Choi
H. W.
and
Rokhlin
S. I.
2006
Electrical discharges between platinum nanoprobe tips and gold films at nanometer gap lengths
Nanotechnology
17
132
139
10.
Meek
J.M.
and
Craggs
,
J.D.
eds.
1978
Electrical breakdown of gases
New York
:
Wiley
11.
Chatteron
P. A.
1966
A theoretical study of field emission initiated vacuum breakdown
Proc. Phys. Soc.
88
231
245
12.
Davis
D.K.
and
Biondi
M.A.
1971
Mechanism of DC electrical breakdown between extended electrodes in vacuum
,
J. Appl. Phys.
42
3089
3107
13.
Lins
G.
and
Verleger
J.
1996
Detection of metal vapour in the high-current phase of a pseudo spark switch by resonance absorption of laser light
J. Phys. D: Appl. Phys.
29
784
788
14.
Mesyats
G.A.
and
Proskurovsky
D.I.
1989
Pulsed Electrical Discharge in Vacuum
Berlin Hiedelberg FRG
:
Spriger-Verlag
.
15.
Urech
L.
,
Lippert
T.
,
Wokaun
A.
,
Martin
A.
,
Madebach
H.
and
Kruger
J.
2006
Appl Surface Sci
252
4754
.
16.
Hashida
M.
,
Semerok
A.F.
,
Gobert
O.
,
Petite
G.
,
Izawa
Y.
, and
Wagner
J.F.
2002
Appl. Surface Sci
197
862
.
17.
J.
Chen
,
D.F.
Farson
and
S.I.
Rokhlin
,
J Appl. Phys.
105
, 013302 (
2009
).
18.
J.
Chen
,
D.F.
Farson
and
S.I.
Rokhlin
,
Appl. Phys. Lett.
90
, 201505 (
2007
).
19.
K.H.
Becker
,
K.H.
Schoenbach
and
J.G.
Eden
,
J. Phys. D
39
,
R55
(
2006
)
20.
S.F.
Lyuksyutov
,
P.B.
Paramonov
,
I.
Dolog
and
R.M.
Ralich
,
Nanotechnology
14
,
716
(
2003
)
21.
E.T.
Enikov
and
A.
Palaria
,
Nanotechnology
15
,
1211
(
2004
)
22.
S.T
Purcell
,
V.T.
Binh
and
P.
Thevenard
,
Nanotechnology
12
,
168
(
2001
)
23.
R.M
Silver
,
E.E.
Ehrichs
and
A.L.
de Lozanne
,
Appl. Phys. Lett.
51
,
247
(
1987
)
24.
Y.W
Zhu
,
C.H.
Sow
,
M.C.
Sim
,
G.
Sharma
and
V.
Kripesh
,
Nanotechnology
18
, 385304 (
2007
)
25.
J.P
Verboncoeur
,
A.B.
Langdon
and
N.T.
Gladd
Computer Physics Communications.
87
,
199
(
1995
).
26.
J.P
Verboncoeur
,
Plasma Phys. Control. Fusion
,
47
,
A231
(
2005
).
27.
J.N
Leboeuf
,
K.R.
Chen
,
J.M.
Donato
,
D.B.
Geohegan
,
C.L.
Liu
,
A.A.
Puretzky
,
R.F.
Wood
,
Phys. Plasmas
3
,
2203
(
1996
)
28.
E.J
Worts
,
S.D.
Kovaleski
,
IEEE Trans. Plasma Sci.
34
,
1640
(
2006
).
29.
M.
Radmilovic’-Radjenovic’
,
B.
Radjenovic’
,
Contrib. Plasma Phys.
47
,
165
(
2007
)
30.
O.
Ellegaard
,
T.
Nedelea
,
J.
Schou
,
H.M.
Urbassek
,
Appl. Surf. Sci.
197
,
229
(
2002
).
31.
G.J.H.
Brussaarda
,
J.
Hendriks
,
Appl. Phys. Lett.
86
, 081503 (
2005
).
32.
P.
Hommelhoff
,
Y.
Sortais
,
A.
Aghajani-Talesh
and
M.A.
Kasevich
,
Phys. Rev. Lett.
96
, 077401 (
2006
).
33.
W.M.
Wood
,
C.W.
Siders
, and
M.C.
Downer
,
IEEE Transactions on Plasma Science.
21
,
20
(
1993
).
34.
B.
Le Drogoff
,
J.
Margot
,
M.
Chaker
, et al,
Spectrochimica Acta Part B-Atomic Spectroscopy
56
,
987
(
2001
).
35.
Duley
W.W.
1983
Laser Processing and Analysis of Materials
New York
:
Plenum Press
This content is only available via PDF.
You do not currently have access to this content.