The present paper is concerned with improving the sensing performance of optical fiber Bragg gratings (FBG) by the deposition of periodic metallic thin films around optical fibers to make superstructure FBGs (SFBG). Laser-Assisted Maskless Microdeposition (LAMM), which is an additive laser microdeposition method, is used to selectively deposit on-fiber thin films from silver nanoparticles. The LAMM process characterization, including the microstructure and mechanical properties of on-fiber thin films, are also presented. In addition, as the laser radiation is a major part of the process, the effects of parameters related to the laser treatment of samples are studied. To design the thin films, an optomechanical model of SFBG sensors with on-fiber thin films is developed. The sensitivity analysis and the capabilities of the sensor for multi-parameter sensing are also investigated.

1.
Erdogan
,
T.
(
1997
)
Fiber Grating Spectra
,
Journal of Lightwave Technology
,
15
,
1277
1294
.
2.
Betz
,
D.C.
,
Thursby
,
G.
,
Culshaw
,
B.
, &
Staszewski
,
W.J.
(
2006
)
Advanced layout of a fiber bragg grating strain gauge rosette
,
Journal of Lightwave Technology
,
24
,
1019
1026
.
3.
Hsu
,
Y.S.
,
Wang
,
L.
,
Liu
,
W.F.
, &
Chiang
,
Y.J.
(
2006
)
Temperature compensation of optical fiber Bragg grating pressure sensor
,
IEEE Photonics Technology Letters
,
18
,
874
876
.
4.
Yoffe
,
G.W.
,
Krug
,
P.A.
,
Ouellette
,
K.F.
, and
Thorncraft
,
D.A.
(
1995
)
Passive temperature-compensating package for optical fiber gratings
,
Applied Optics
,
34
,
6859
6861
.
5.
Du
,
W.C.
,
Tao
,
X.M.
, &
Tam
,
H.Y.
(
1998
)
Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature
,
IEEE Photonics Technology Letters
,
11
,
105
107
.
6.
Yu
,
Y.
,
Tam
,
H.
,
Chung
,
W.
, &
Demokan
,
M.S.
(
2000
)
Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature
,
Optics Letters
,
25
,
141
1143
.
7.
Iwashima
,
T.
,
Inoue
,
A.
,
Shigematsu
,
M.
,
Nishimura
,
M.
, &
Hattori
,
Y.
(
1997
)
Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes
,
Electronics Letters
,
33
,
417
419
.
8.
Guan
,
B.O.
,
Tam
,
H.Y.
,
Tao
,
X.M.
, and
Dong
X.Y.
(
2000
)
Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating
,
IEEE Photonics Technology Letters
,
12
,
675
677
.
9.
Li
,
L.
,
Geng
,
J.
,
Zhao
,
L.
,
Chen
,
G.
,
Chen
,
G.
,
Fang
,
Z.
, &
Fung
Lam
, C. (
2003
)
Response characteristics of thin-film-heated tunable fiber Bragg gratings
,
IEEE Photonics Technology Lettetters
,
15
,
545
547
.
10.
Steinvurzel
,
P.
,
MacHarrie
,
R.A.
,
Baldwin
,
K.W.
,
Van Hise
,
C.W.
,
Eggleton
,
B. J.
, &
Rogers
,
J.A.
(
2005
)
Optimization of distributed resistive metal film heaters in thermally tunable dispersion compensators for high-bit-rate communication systems
,
Applied Optics
,
44
,
2782
2291
.
11.
Fox
G R
,
Muller
C A P
,
Setter
N
,
Costantini
D M
,
Ky
N H
and
Limberger
H G
1997
Wavelength tunable fiber Bragg grating devices based on sputter deposited resistive and piezoelectric coatings
J. Vac. Sci. Technol. A
15
1791
5
12.
Sutapun
,
B.
,
Tabib-Azar
,
M.
, &
Kazemi
,
A.
(
1999
)
Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing
,
Sensors Actuators B
,
60
,
27
34
.
13.
Yinying
,
Z.
,
Dexiang
,
W.
,
Enguang
,
D.
,
Deming
,
W.
&
Anshi
,
X.
(
2003
)
Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating
,
Microw. Opt. Technol. Lett.
,
37
,
288
292
.
14.
Lupi
,
C.
,
Felli
,
F.
,
Ippoliti
,
L.
,
Caponero
,
M.A.
,
Ciotti
,
M.
,
Nardelli
,
V.
, &
Paolozzi
,
A.
(
2005
)
Metal coating for enhancing the sensitivity of fibre Bragg grating sensors at cryogenic temperature
,
Smart Materials and Structures
,
14
,
N71
N76
.
15.
Eggleton
,
B.J.
,
Krug
,
P.A.
,
Poladian
,
L.
, &
Ouellette
,
F.
(
1994
)
Long periodic superstructure Bragg gratings in optical fibers
,
Electronics Letters
,
30
,
1620
1621
.
16.
Boresi
,
A.P.
,
Schmidt
,
R.J.
&
Sidebottom
O.M.
(
1991
)
advanced Mechanics of Materials
,
Wiley
,
810
pp.
17.
Kim
,
K.S.
,
Kollar
,
L.
, &
Springer
,
G.S.
(
1993
)
A model of embedded fiber optic Fabry–Perot temperature and strain sensors
,
Journal of Composite Materials
,
27
,
1618
1662
.
18.
Alemohammad
,
H.
,
Aminfar
,
O.
, &
Toyserkani
,
E.
(
2008
)
Morphology and microstructure analysis of nano-silver thin films deposited by laser-assisted maskless microdeposition
,
Journal of Micromechanics and Microengineering
,
18
,
115015
.
19.
Nakaso
,
K.
,
Shimada
,
M.
,
Okuyama
,
K.
,
Deppert
,
K.
(
2002
)
Evaluation of the change in the morphology of gold nanoparticles during sintering
,
Journal of Aerosol Sciences
,
33
,
1061
1074
.
20.
Auyeung
,
R.C.Y.
,
Kim
,
H.
,
Mathews
,
S.A.
, &
Piqué
,
A.
(
2007
)
Laser Direct-Write of Metallic Nanoparticle Inks
,
JLMN-Journal of Laser Micro/Nanoengineering
,
2
,
21
25
.
21.
Greer
,
J.
,
Street
,
R.
(
2007
)
Thermal cure effects on electrical performance of nanoparticle silver inks
,
55
,
6345
6349
.
22.
Moon
,
K.
,
Dong
,
H.
,
Maric
,
R.
,
Pothukuchi
,
S.
,
Hunt
,
A.
,
Li
,
Y.
, &
Wong
,
C.P.
(
2005
)
Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications
,
Journal of Electronic Materials
,
34
,
168
175
.
This content is only available via PDF.
You do not currently have access to this content.