The first case of bone disease treatment by means of a calcium phosphate compounds dates from almost one century ago and some decades later, in the 1970’s, the first calcium phosphate based biomaterials were commercialized. Nowadays, calcium phosphate ceramics are extensively employed in biomedical applications involving bone defect repair.

In applications dealing with low loaded implants, like cranial defects restoration, calcium phosphate bioceramic implants fulfill the functional requirements of traditional metallic implants, but also avoid the necessity to be removed from the body. Due to their osseointegration properties, calcium phosphate bioceramics promote new bone growth and the implant integration in the body. However, ceramic materials processing is a delicate task, and a technique to produce bioactive ceramic implants tailored to the patient anatomical parameters is still required.

In this work the study of calcium phosphate bioceramics processing by rapid prototyping based on laser cladding was carried out. The obtained results were characterized in terms of geometry and composition by means of electron scanning microscopy, energy dispersive X-ray spectroscopy, X-Ray diffraction, X-Ray fluorescence, FT-IR and Raman spectroscopy. The relationships between the processing parameters and the obtained properties were studied, in addition to the bioactivity assessment of the produced parts.

1.
Williams
,
D.F.
(
1992
) Medical and dental materials: Biofunctionality and biocompatibility, in
R.W.
Cahn
,
P.
Haasen
,
E.J.
Kramer
(eds.),
Materials Science and technology
,
VCH
,
Veinheim
, vol.
14
1
28
.
2.
Hench
LL
,
Wilson
J.
(
1993
)
An introduction to bioceramics
.
World Scientific
.
3.
DeGroot
K
,
Klein
CP
,
Wolke
JG
,
De Blieck-Hogervorst
. (
1990
) Chemistry of calcium phosphate bioceramics.
Handbook of Bioactive Ceramics
, Vol
II
. Eds.
Yamamuro
T
,
Hench
LL
,
Wilson
J.
CRC Press
Boca Ratón
.
4.
Bohner
M.
Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements
.
Injury, Int. J. Care Injured
2000
;
31
:
37
47
.
5.
Webb
,
P.A.
(
2000
)
A review of rapid prototyping (RP) techniques in the medical and biomedical sector
.
J. Med. Eng. Technol.
24
,
149
153
.
6.
Griffin
,
A.
,
McMillin
,
S.
,
Griffin
,
C.
,
Barton
,
K.
(
1997
)
Bioceramic RP materials for medical models
.
Proceedings of the 7th International Conference on Rapid Prototyping
,
University of Dayton and Stanford University
,
355
359
.
7.
Chartoff
,
R.
,
Steidle
,
C.
,
Klosterman
,
D.
,
Graves
,
G.
,
Osborne
,
N.
(
2002
) Automated fabrication of custom bone implants using rapid prototyping.
Bussinesss briefing: Medical device manufacturing and technology
,
10
14
.
8.
Salgado
,
A.J.
,
Coutinho
,
O.P.
,
Reis
,
R.L.
(
2004
)
Bone tissue engineering: State of the art and future trends
.
Macromol. Biosci.
2
,
743
765
.
9.
Bertrand
,
Ph.
,
Bayle
,
F.
,
Smurov
,
I.
, (
2007
)
Yttria-zirconia components manufacturing for biomedical applications by SLS technology
, in
Proceedings of the International Congress on Applications of Lasers & Electro-Optics
,
Orlando, USA
,
192
195
.
10.
Steen
,
W.M.
(
2003
)
Laser materials processing
.
Springer Verlag
,
254
255
.
11.
Penel
,
G.
,
Leroy
,
G.
,
Rey
,
C.
,
Bres
,
E.
(
1998
)
MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites
.
Calcif. Tissue Int
63
,
475
481
.
12.
Posset
,
U.
,
Löcklin
,
E.
,
Thull
,
R.
,
Kieferm
W.
(
1998
)
Vibrational spectroscopic study of tetracalcium phosphate in pure polycrystalline form as a constituent of a self-setting bone cement
.
J Biomed Mater Res
,
40
,
640
645
.
13.
Lusquiños
F.
,
Pou
J.
,
Boutinguiza
M.
,
Quintero
F.
,
Soto
R.
,
León
B.
,
Pérez-Amor
M.
(
2005
) “
Main characteristics of calcium phosphate coatings obtained by laser cladding
”.
Appl. Surf. Sci.
247
, pp.
486
492
.
14.
Lusquiños
,
F.
,
Pou
,
J.
,
Arias
,
J.L.
,
Boutinguiza
M.
,
Pérez-Amor
.
M.
,
León
,
B.
,
Driessens
,
F.C.M.
(
2001
)
Production of calcium phosphate coatings on Ti6Al4V obtained by Nd:yttrium-aluminum-garnet laser cladding
.
J Appl Phys
90
,
4231
4236
.
15.
Lusquiños
,
F.
,
De Carlos
,
A.
,
Pou
,
J.
,
Arias
,
J.L.
,
Boutinguiza
,
M.
,
León
,
B.
,
Pérez-Amor
,
M.
,
Driessens
,
F.C.M.
,
Hing
,
K.
,
Gibson
,
I.
,
Best
,
S.
,
Bonfield
,
W.
(
2003
)
Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties
.
J Biomed Mater Res
64A
,
630
637
.
16.
Ehara
,
A.
,
Ogata
,
K.
,
Imazato
,
S.
,
Ebisu
,
S.
,
Nakano
,
T.
,
Umakoshi
,
Y.
(
2003
)
Effects of α-TCP and TetCP on MC3T3-E1 proliferation, differentiation and mineralization
.
Biomaterials
24
,
831
836
.
17.
Wiltfang
,
J.
,
Merten
,
H.A.
,
Schlegel
,
K.A.
,
Schultze-Mosgau
,
S.
,
Kloss
,
F.R.
,
Rupprecht
,
S.
,
Kessler
,
P.
(
2002
)
Degradation characteristics of α and β tri-calcium-phosphate (TCP) in minipigs
.
J Biomed Mater Res
63
,
115
121
.
18.
Kurashina
,
K.
,
Kurita
,
H.
,
Kotani
,
A.
,
Takeuchi
,
H.
,
Hirano
,
M.
(
1997
)
In vivo study of a calcium phosphate cement consisting of α-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide
.
Biomaterials
18
,
147
151
.
19.
Constantino
,
P.D.
,
Friedman
,
C.D.
,
Jones
,
K.
,
Chow
,
L.C.
,
Sisson
,
G.A.
(
1992
)
Experimental hydroxyapatite cement cranioplasty
.
Plast Reconstr Surg
90
,
174
191
.
20.
Ducheyne
,
P.
,
Qiu
,
Q.
(
1999
)
Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function
.
Biomaterials
20
,
2287
2303
.
This content is only available via PDF.
You do not currently have access to this content.