We performed experiments to investigate the dependence of the ablation rate of three metals (aluminium, titanium and copper) on the fluence of nanosecond laser pulses at 1064, 532 and 355 nm wavelength in atmospheric air. We assessed the ablation rate for values of the fluence in the range of 1-600 J/cm2 by changing the irradiated area at the target surface, while exchanging the harmonics modules of a Nd-YAG laser system to vary the wavelength. The data indicate that, at each wavelength, the ablation rate for the three metals studied here increases approximately logarithmically with the fluence. By analysing the logarithmic dependence of the ablation rate on fluence, we find three main characteristics that describe metal ablation in nanosecond regime. First, the ablation threshold fluence is directly related to the optical penetration depth, which depends on the irradiated material and wavelength. Second, the ablation rate decays with the optical penetration depth and thermal diffusivity of the material, the aluminium ablation being the most efficient. Third, the ablation rate of metals increases with increasing laser wavelength. The increase of the ablation rate with wavelength is related to the superposition of two effects: the increase of plasma absorption with wavelength, which leads to an enhanced recoil pressure on the melted surface of the target, and the increase of the evaporation and melt ejection rates due to the large recoil pressure.

1.
Bauerle
,
D.
(
2000
)
Laser processing and chemistry
, in
Springer-Verlag
,
Berlin-Heidelberg-New York
.
2.
Popescu
,
I.M.
& al. (
1979
)
Aplicaţii ale laserelor
, in Ed.
Tehnica
,
Bucuresti
, (in Romanian).
3.
von Allemen
,
M.
,
Bllatter
,
A.
(
1995
)
Laser-Beam Interaction with Materials
,
Springer-Verlag
.
4.
Ready
,
J. F.
(
1971
)
Effects of High-power Laser Radiation
, in
Academic Press
,
New York-London
.
5.
Ursu
,
I.
,
Mihailescu
,
I.N.
,
Prokhorov
,
A.M.
,
Konov
,
V.I.
(
1986
)
Interactiunea radiatiei laser cu metalele
, in
Editura Academiei R.S.R.
,
Bucuresti
, (in Romanian)
6.
Simon
,
P.
,
Ihlemann
,
J.
(
1996
)
Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses
,
Appl. Phys. A
63
,
505
7.
Miller
,
J.C.
,
Haglund
,
R.F.
(Eds.) (
1998
)
Laser Ablation and Desorption, Experimental Methods in the Physical Sciences
Vol.
30
,
Academic Press
,
New York
.
8.
Anisimov
,
S.I.
,
Luk’yanchuk
,
B.S.
(
2002
)
Selected problems of laser ablation theory
,
Physics-Uspekhi
45
,
293
.
9.
Vertes
,
A.
,
Gijbels
,
R.
,
Adams
,
F.
(Eds.) (
1993
)
Laser ionization mass analysis
,
John Wiley&Sons
,
New York
.
10.
Stafe
,
M.
,
Vladoiu
,
I.
,
Popescu
,
I.M
(
2008
)
Impact of the laser wavelength and fluence on the ablation rate of aluminium
,
Cent. Eur. J. Phys.
6
,
327
.
11.
Lu
,
Q.
(
2003
)
Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation
,
Phys. Rev. E
67
,
016410
.
12.
Bulgakova
N.M.
&
Bulgakov
A.V.
(
2001
)
Pulsed laser ablation of solids: transition from normal vaporization to phase explosion
,
Appl. Phys. A
73
,
199
13.
Amoruso
,
S.
,
Bruzzese
,
R.
,
Spinelli
,
N.
,
Velotta
,
R.
(
1999
)
Characterization of laser-ablation plasmas
,
J. Phys. B
32
,
R131
R172
.
14.
Amoruso
,
S.
,
Armenante
,
M.
,
Berardi
,
V.
,
Bruzzese
,
R.
,
Spinelli
,
N.
,
Velotta
R
(
1997
)
Absorption and saturation mechanisms in aluminium laser ablated plasmas
,
Appl. Phys. A
65
,
265
.
15.
Wolff-Rottke
,
B.
,
Ihlemann
,
J.
,
Schmidt
,
H.
, (
1995
)
Influence of the laser-spot diameter on photo-ablation rates
,
Appl. Phys. A
60
,
131
.
16.
Bogaerts
,
A.
,
Chen
,
Z.
(
2005
)
Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modelling investigation
,
Spectrochimica Acta B
60
,
1280
.
17.
Stafe
,
M.
,
Negutu
,
C.
,
Popescu
,
I.M.
(
2005
)
Real time determination and control of the laser drilled holes depth
,
Shock Waves
14
,
123
.
18.
Stafe
,
M.
,
Negutu
,
C.
,
Popescu
,
I.M.
(
2007
)
Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime
,
Appl. Surf. Sci.
253
,
6353
.
19.
Garrison
,
B.
,
Itina
,
T.
,
Zhigilei
,
L.
(
2003
)
Limit of overheating and the threshold behavior in laser ablation
,
Phys. Rev. E
68
,
041501
.
20.
Gamaly
,
E.G.
,
Rode
,
A.V.
,
Perrone
,
A.
,
Zocco
,
A.
(
2001
)
Mechanisms of ablation-rate decrease in multiple-pulse laser ablation
,
Appl. Phys. A
73
,
143
.
21.
Chichkov
,
B.N.
,
Momma
,
C.
,
Nolte
,
S.
,
von Alvensleben
,
F.
,
Tünnermannet
,
A.
(
1996
)
Femto-second, picosecond and nanosecond laser ablation of solids
,
Appl. Phys. A
63
,
109
.
22.
Wynne
,
A. E.
,
Stuart
,
B. C.
(
2003
)
Rate dependence of short-pulse laser ablation of metals in air and vacuum
,
Appl. Phys. A
76
,
373
.
23.
Klimentov
,
S.M.
& al. (
2007
)
Effect of low-threshold air breakdown on material ablation by short laser pulses
,
Physics of Wave Phenomena
15
,
1
.
24.
Semerok
,
A.
& al., (
1999
)
Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses
,
Appl. Surf. Sci.
,
138-139
,
311
.
25.
Born
,
M.
&
Wolf
,
E.
(
1993
)
Principles of Optics
6th ed., in
Pergamon Press
,
Oxford
.
26.
Lide
,
D.R.
ed. (
2001
)
CRC Handbook of Chemistry and Physics
, 82nd edition, in
CRC Press
,
Boca Raton, FL
.
27.
Zel’dovich
,
Ya.B.
,
Raizer
,
Yu.P.
(
2001
)
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
,
Dover
,
Mineola, New York
.
This content is only available via PDF.
You do not currently have access to this content.