Two-photon polymerization (TPP, 2PP) has been utilized in fluorescence microscopy but it is also a powerful 3D microfabrication technique for manufacturing of submicron structures and patterns of biological molecules. TPP provides an efficient way to pattern surfaces of cell culture dishes or tissue engineering scaffolds and to guide the growth of cultivated cells. In this study the TPP process was utilized to crosslink two biologically relevant proteins – avidin and bovine serum albumin. The polymerization setup included a frequency doubled, diode-pumped Q-switched Nd:YAG pulsed laser, which was operated at 532 nm. Submicron protein strings were fabricated by moving a motorized X-Y-Z stage at a suitable rate along a predefined path. The width of the protein patterns could be varied by changing the laser power and the speed of the stage. These results show that this type of fabrication setup is suitable for fabrication of patterns of biological molecules.

1.
Denk
,
W.
,
Strickler
,
J.H.
&
Webb
,
W.W.
(
1990
)
Two-photon laser scanning fluorescence microscopy
,
Science
248
,
73
76
.
2.
Serbin
,
J.
,
Egbert
,
A.
,
Ostendorf
,
A.
,
Chichkov
,
B.N.
,
Houbertz
,
R.
,
Domann
,
G.
,
Schulz
,
J.
,
Cronauer
,
C.
,
Fröhlich
,
L.
&
Popall
,
M.
(
2003
)
Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics
,
Optics Letters
28
,
301
303
.
3.
Serbin
,
J.
&
Gu
,
M.
(
2006
)
Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization
,
Optics Express
14
,
3563
3568
.
4.
Serbin
,
J.
,
Ovsianikov
,
A.
&
Chichkov
,
B.
(
2004
)
Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties
,
Optics Express
12
,
5221
5228
.
5.
Campagnola
,
P.J.
,
Delguidice
,
D.M.
,
Epling
,
G.A.
,
Hoffacker
,
K.D.
,
Howell
,
A.R.
,
Pitts
,
J.D.
&
Goodman
,
S.L.
(
2000
)
3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes
,
Macromolecules
33
,
1511
1513
.
6.
Pitts
,
J.D.
,
Howell
,
A.R.
,
Taboada
,
R.
,
Banerjee
,
I.
,
Wang
,
J.
,
Goodman
,
S.L.
&
Campagnola
,
P.J.
(
2002
)
New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: Bovine serum albumin and type 1 collagen
,
Photochemistry and Photobiology
76
,
135
144
.
7.
Lee
,
W.
,
Pruzinsky
,
S.A.
&
Braun
,
P.V.
(
2002
)
Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals
,
Advanced Materials
14
,
271
274
.
8.
Qi
,
F.
,
Li
,
Y.
,
Guo
,
H.
,
Yang
,
H.
&
Gong
,
Q.
(
2004
)
Wavy lines in two-photon photopolymerization microfabrication
,
Optics Express
12
,
4725
4730
.
9.
Baldacchini
,
T.
,
Pons
,
A.-.
,
Pons
,
J.
,
LaFratta
,
C.N.
,
Fourkas
,
J.T.
,
Sun
,
Y.
&
Naughton
,
M.J.
(
2005
)
Multiphoton laser direct writing of two-dimensional silver structures
,
Optics Express
13
,
1275
1280
.
10.
Maruo
,
S.
,
Nakamura
,
O.
&
Kawata
,
S.
(
1997
)
Three-dimensional microfabrication with two-photon-absorbed photopolymerization
,
Optics Letters
22
,
132
134
.
11.
Cunningham
,
L.P.
,
Veilleux
,
M.P.
&
Campagnola
,
P.J.
(
2006
)
Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach
,
Optics Express
14
,
8613
8621
.
12.
Narayan
,
R.J.
,
Jin
,
C.
,
Doraiswamy
,
A.
,
Mihailescu
,
I.N.
,
Jelinek
,
M.
,
Ovsianikov
,
A.
,
Chichkov
,
B.
&
Chrisey
,
D.B.
(
2005
)
Laser processing of advanced bioceramics
,
Advanced Engineering Materials
7
,
1083
1098
.
13.
Sun
,
H.B.
&
Kawata
,
S.
(
2003
)
Two-photon laser precision microfabrication and its applications to micro-nano devices and systems
,
Journal of Lightwave Technology
21
,
624
633
.
14.
Knöner
,
G.
,
Higuet
,
J.
,
Parkin
,
S.
,
Nieminen
,
T.A.
,
Heckenberg
,
N.R.
&
Rubinsztein-Dunlop
,
H.
(
2006
) Two-photon polymerization process for optically driven micromachines, in
Photonics: Design, Technology, and Packaging II
,
Brisbane, Australia
,
208
216
.
15.
Lee
,
K.S.
,
Yang
,
D.Y.
,
Park
,
S.H.
&
Kim
,
R.H.
(
2006
)
Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications
,
Polymers for Advanced Technologies
17
,
72
82
.
16.
Belfield
,
K.D.
,
Ren
,
X.
,
Van Stryland
,
E.W.
,
Hagan
,
D.J.
,
Dubikovsky
,
V.
&
Miesak
,
E.J.
(
2000
)
Near-IR two-photon photoinitiated polymerization using a fluorone/amine initiating system
,
Journal of the American Chemical Society
122
,
1217
1218
.
17.
Belfield
,
K.D.
,
Schafer
,
K.J.
,
Liu
,
Y.
,
Liu
,
J.
,
Ren
,
X.
&
Van Stryland
,
E.W.
(
2000
)
Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging
,
Journal of Physical Organic Chemistry
13
,
837
849
.
18.
Schafer
,
K.J.
,
Hales
,
J.M.
,
Balu
,
M.
,
Belfield
,
K.D.
,
Van Stryland
,
E.W.
&
Hagan
,
D.J.
(
2004
)
Two-photon absorption cross-sections of common photoinitiators
,
Journal of Photochemistry and Photobiology A: Chemistry
162
,
497
502
.
19.
Kawata
,
S.
,
Sun
,
H.B.
,
Tanaka
,
T.
&
Takada
,
K.
(
2001
)
Finer features for functional microdevices
,
Nature
412
,
697
698
.
20.
Galajda
,
P.
&
Ormos
,
P.
(
2001
)
Complex micromachines produced and driven by light
,
Applied Physics Letters
78
,
249
251
.
21.
Pitts
,
J.D.
,
Campagnola
,
P.J.
,
Epling
,
G.A.
&
Goodman
,
S.L.
(
2000
)
Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release
,
Macromolecules
33
,
1514
1523
.
22.
Shen
,
H.
,
Spikes
,
J.D.
,
Kopeceková
,
P.
&
Kopecek
,
J.
(
1996
)
Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl) methacrylamide copolymers
,
Journal of Photochemistry and Photobiology B: Biology
34
,
203
210
.
23.
Shen
,
H.
,
Spikes
,
J.D.
,
Kopecková
,
P.
&
Kopecek
,
J.
(
1996
)
Photodynamic crosslinking of proteins II. Photocrosslinking of a model protein-ribonuclease A
,
Journal of Photochemistry and Photobiology B: Biology
35
,
213
219
.
24.
Bhatia
,
S.N.
&
Chen
,
C.S.
(
1999
)
Tissue Engineering at the Micro-Scale
,
Biomedical Microdevices
2
,
131
144
.
25.
Desai
,
T.A.
(
2001
)
Micro- and nanoscale structures for tissue engineering constructs
,
Medical Engineering and Physics
22
,
595
606
.
26.
Pins
,
G.D.
,
Bush
,
K.A.
,
Cunningham
,
L.P.
&
Campagnola
,
P.J.
(
2006
)
Multiphoton excited fabricated nano and micro patterned extracellular matrix proteins direct cellular morphology
,
Journal of Biomedical Materials Research - Part A
78
,
194
204
.
27.
Basu
,
S.
,
Cunningham
,
L.P.
,
Pins
,
G.D.
,
Bush
,
K. A.
,
Taboada
,
R.
,
Howell
,
A.R.
,
Wang
,
J.
&
Campagnola
,
P.J.
(
2005
)
Multiphoton Excited Fabrication of Collagen Matrixes Cross-Linked by a Modified Benzophenone Dimer: Bioactivity and Enzymatic Degradation
,
Biomacromolecules
6
,
1465
1474
.
28.
Kaehr
,
B.
,
Allen
,
R.
,
Javier
,
D.J.
,
Currie
,
J.
&
Shear
,
J.B.
(
2004
)
Guiding neuronal development with in situ microfabrication
,
Proceedings of the National Academy of Sciences of the United States of America
101
,
16104
16108
.
29.
Ostendorf
,
A.
&
Chichkov
,
B.N.
(
2006
)
Two-photon polymerization: A new approach to micromachining
,
Photonics Spectra
40
,
72
80
.
30.
Doraiswamy
,
A.
,
Jin
,
C.
,
Narayan
,
R.J.
,
Mageswaran
,
P.
,
Mente
,
P.
,
Modi
,
R.
,
Auyeung
,
R.
,
Chrisey
,
D.B.
,
Ovsianikov
,
A.
&
Chichkov
,
B.
(
2006
)
Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices
,
Acta Biomaterialia
2
,
267
275
.
31.
Basu
,
S.
&
Campagnola
,
P.J.
(
2004
)
Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation
,
Journal of Biomedical Materials Research - Part A
71
,
359
368
.
32.
Ovsianikov
,
A.
,
Chichkov
,
B.
,
Adunka
,
O.
,
Pillsbury
,
H.
,
Doraiswamy
,
A.
&
Narayan
,
R.J.
(
2007
)
Rapid prototyping of ossicular replacement prostheses
,
Applied Surface Science
253
,
6603
6607
.
33.
Kaehr
,
B.
,
Ertaş
,
N.
,
Nielson
,
R.
,
Allen
,
R.
,
Hill
,
R.T.
,
Plenert
,
M.
&
Shear
,
J.B.
(
2006
)
Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser
,
Analytical Chemistry
78
,
3198
3202
.
34.
Tsai
,
W.B.
&
Wang
,
M.C.
(
2005
)
Effect of an avidin-biotin binding system on chondrocyte adhesion, growth and gene expression
,
Biomaterials
26
,
3141
3151
.
This content is only available via PDF.
You do not currently have access to this content.