We report our work on nanophotonic devices and the associated fabrication processes, mostly based on the top-down and bottom-up integration of photonic crystal on silicon and other foreign substrates. Encapsulated photonic crystals were proposed based on the integration of nanoparticles with patterned photonic crystals. Infrared photodetectors based the hybrid integration of quantum dots and photonic crystal cavities will be discussed for spectrally-selective absorption enhancement. We will also report other collaborative work on ultra-compact filters/detectors on Si, based on the top down lithographic patterning and bottom up stacking processes of nanomembranes. These heterogeneous integration processes for dissimilar materials systems hold great promises for nanophotonic devices and flexible photonic system integrations, suitable for applications ranging from optical interconnect systems and silicon photonics, to infrared sensing and flexible displays.

1.
Koch
,
T. L.
, “
NSF-Sponsored Workshop on ‘Very Large Scale Photonic Integration’
,” (
Arlington, VA
,
2007
).
2.
Kimerling
,
L. C.
(
2000
)
Photons to the rescue: microelectronics becomes microphotonics
,
Electrochemical Society Interface
9
,
28
33
.
3.
Lipson
,
M.
(
2005
)
Guiding, modulating, and emitting light on silicon-challenges and opportunities
,
J. Lightwave Technol
23
,
4222
4238
.
4.
Johnson
,
S. G.
,
Fan
,
S.
,
Villeneuve
,
P. R.
,
Joannopoulos
,
J. D.
, and
Kolodziejski
,
L. A.
(
1999
)
Guided modes in photonic crystal slabs
,
Phys. Rev. B
60
,
5751
5758
.
5.
Noda
,
S.
, and
Baba
,
T.
(
2003
)
Roadmap on Photonic Crystals
,
Kluwer Academic Pub
,
Boston
.
6.
Zakhidov
,
A. A.
,
Baughman
,
R. H.
,
Iqbal
,
Z.
,
Cui
,
C.
,
Khayrullin
,
I.
,
Dantas
,
S. O.
,
Marti
,
J.
, and
Ralchenko
,
V. G.
(
1998
)
Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths
,
Science
282
,
897
.
7.
Zhou
,
W.
(
2006
)
Encapsulation for efficient electrical injection of photonic crystal defect mode surface-emitting lasers
,
Appl. Phys. Lett.
88
,
051106
.
8.
Yablonovitch
,
E.
(
1987
)
Inhibited spontaneous emission in solid-state physics and electronics
,
Phy. Rev. Lett.
58
,
2059
2062
.
9.
Fujita
,
M.
,
Takahashi
,
S.
,
Tanaka
,
Y.
,
Asano
,
T.
, and
Noda
,
S.
(
2005
)
Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals
,
Science
308
,
1296
1298
.
10.
Painter
,
O.
,
Lee
,
R. K.
,
Scherer
,
A.
,
Yariv
,
A.
,
O’Brien
,
J. D.
,
Dapkus
,
P. D.
, and
Kim
,
I.
(
1999
)
Two-dimensional photonic band-gap defect mode laser
,
Science
284
,
1819
1821
.
11.
Noda
,
S.
Photonic crystals promise unprecedented lasers and efficient LEDs
,
Laser Focus World
41
,
82
86
.
12.
Park
,
H. G.
,
Kim
,
S. H.
,
Kwon
,
S. H.
,
Ju
,
Y. G.
,
Yang
,
J. K.
,
Baek
,
J. H.
,
Kim
,
S. B.
, and
Lee
,
Y. H.
(
2004
)
Electrically Driven Single-Cell Photonic Crystal Laser
,
Science
305
,
1444
1447
.
13.
O’Brien
,
J. D.
,
Po-Tsung
,
L.
,
Jiang-Rong
,
C.
,
Kuang
,
W.
,
Cheolwoo
,
K.
,
Woo-Jun
,
K.
,
Tian
,
Y.
,
Sang-Jun
,
C.
, and
Dapkus
,
P. D.
, “
Photonic crystal lasers
,” in
VCSELs and Optical Interconnects
(
SPIE-Int. Soc. Opt. Eng; SPIE-Int. Soc. Opt. Eng
,
USA; Brugge, Belgium
,
2003
), pp.
194
206
.
14.
Ogawa
,
S.
,
Imada
,
M.
,
Yoshimoto
,
S.
,
Okano
,
M.
, and
Noda
,
S.
(
2004
)
Control of light emission by 3D photonic crystals
,
Science
305
,
227
229
.
15.
Zhou
,
W. D.
,
Sabarinathan
,
J.
,
Kochman
,
B.
,
Berg
,
E.
,
Qasaimeh
,
O.
,
Pang
,
S.
, and
Bhattacharya
,
P.
(
2000
)
Electrically injected single-defect photonic bandgap surface-emitting laser at room temperature
,
Electron. Lett.
36
,
1541
1542
.
16.
Zhou
,
W. D.
,
Sabarinathan
,
J.
,
Bhattacharya
,
P.
,
Kochman
,
B.
,
Berg
,
E. W.
,
Yu
,
P. C.
, and
Pang
,
S. W.
(
2001
)
Characteristics of a photonic bandgap single defect microcavityelectroluminescent device
,
IEEE J. Quantum. Electron.
37
,
1153
1160
.
17.
Vuckovic
,
J.
,
Loncar
,
M.
,
Mabuchi
,
H.
, and
Scherer
,
A.
(
2002
)
Design of photonic crystal microcavities for cavity QED
,
Phys. Rev. E
65
, 016608/016601-1660811.
18.
Zhou
,
W.
(
2006
)
Encapsulation for efficient electrical injection of photonic crystal defect mode surface-emitting lasers
,
Appl. Phys. Lett.
88
,
51106
51106
.
19.
Fujita
,
R.
,
Ushigome
,
R.
, and
Baba
,
T.
(
2001
)
Large spontaneous emission factor of 0.1 in a microdisk injectionlaser
,
IEEE Photon. Technol. Lett.
13
,
403
405
.
20.
Ryu
,
H. Y.
,
Notomi
,
M.
,
Kuramoti
,
E.
, and
Segawa
,
T.
(
2004
)
Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser
,
Appl. Phys. Lett.
84
,
1067
.
21.
Zhou
,
W.
(
2005
)
Encapsulated photonic crystals for high efficiency nanolasers
,
Proceedings of SPIE
5931
,
59310A
.
22.
Chen
,
L.
,
Zhou
,
W.
,
Qiang
,
Z.
, and
Brown
,
G. J.
(
2006
)
Spectral selectivity of photonic crystal infrared photodetctors
,
Proceedings of SPIE
6370
,
63701I
.
23.
Posani
,
K. T.
,
Tripathi
,
V.
,
Annamalai
,
S.
,
Weisse-Bernstein
,
N. R.
,
Krishna
,
S.
,
Perahia
,
R.
,
Crisafulli
,
O.
, and
Painter
,
O. J.
(
2006
)
Nanoscale quantum dot infrared sensors with photonic crystal cavity
,
Appl. Phys. Lett.
88
,
151104
.
24.
Chen
,
L.
,
Qiang
,
Z.
,
Zhou
,
W.
, and
Brown
,
G. J.
(
2007
)
Spectral selective absorption enhancement in photonic crystal defect cavities
,
Proceedings of SPIE
6480
,
64801C
.
25.
Qiang
,
Z.
,
Zhou
,
W. D.
,
Lu
,
M.
, and
Brown
,
G. J.
(
2008
)
Fano Resonance Enhanced Infrared Absorption for Infrared Photodetectors
,
Proceedings of SPIE
6901
,
69010F
.
26.
Yang
,
H.
,
Chen
,
L.
,
Qiang
,
Z.
,
Zhou
,
W.
,
Zhang
,
W.
,
Stiff-Roberts
,
A.
,
Krishna
,
S.
, and
Brown
,
G. J.
(
2007
)
Characteristics of Photonic Crystal Cavity Based Infrared Photodetectors, Lasers and Electro-Optics Society, 2007. LEOS 2007
.
The 20th Annual Meeting of the IEEE
,
36
37
.
27.
Scott
,
S. A.
, and
Lagally
,
M. G.
(
2007
)
Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon– germanium alloys
,
J. Phys. D.
40
,
R75
R92
.
28.
Yuan
,
H. C.
,
Ma
,
Z.
,
Roberts
,
M. M.
,
Savage
,
D. E.
, and
Lagally
,
M. G.
(
2006
)
High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers
,
J. Appl. Phys.
100
,
013708
.
29.
Rogers
,
J. A.
,
Bao
,
Z.
,
Baldwin
,
K.
,
Dodabalapur
,
A.
,
Crone
,
B.
,
Raju
,
V. R.
,
Kuck
,
V.
,
Katz
,
H.
,
Amundson
,
K.
, and
Ewing
,
J.
(
2001
)
Paper-like Electronic Displays: Large-Area Rubber-Stamped Plastic Sheets of Electronics and Microencapsulated Electrophoretic Inks
,
Proc. Nat. Academy Sci.
98
,
4835
4840
.
30.
Yuan
,
H. C.
,
Celler
,
G. K.
, and
Ma
,
Z.
(
2007
)
7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate
,
J. Appl. Phys.
102
,
034501
.
31.
Yang
,
H.
,
Pan
,
H.
,
Qiang
,
Z.
,
Ma
,
Z.
, and
Zhou
,
W.
(
2008
)
Surface-normal Fano filters based on transferred silicon nanomembranes on glass substrates
,
Electron. Lett.
44
,
858
.
32.
Qiang
,
Z.
,
Yang
,
H.
,
Chen
,
L.
,
Pang
,
H.
,
Ma
,
Z.
, and
Zhou
,
W.
(
2008
)
Fano filters based on transferred silicon nanomembranes on plastic substrates
,
Appl. Phys. Lett.
92
, In press.
33.
Fan
,
S.
, and
Joannopoulos
,
J. D.
(
2002
)
Analysis of guided resonances in photonic crystal slabs
,
Phys. Rev. B
65
,
235112
.
34.
Magnusson
,
R.
, and
Shokooh-Saremi
,
M.
(
2008
)
Physical basis for wideband resonant reflectors, Opt
.
Express
16
,
3456
3462
.
35.
Magnusson
,
R.
, and
Wang
,
S. S.
(
1992
)
New principle for optical filters
,
Appl. Phys. Lett.
61
,
1022
.
36.
Huang
,
M. C. Y.
,
Zhou
,
Y.
, and
Chang-Hasnain
,
C. J.
(
2007
)
A surface-emitting laser incorporating a high-index-contrast subwavelength grating
,
Nature Photonics
119
22
, 11.
This content is only available via PDF.
You do not currently have access to this content.