The study presents results in scale-up of nanoparticle production by laser ablation of ceramics in liquid media and gives a better understanding of influences of laser and process parameters on the nanoparticle productivity. Results presented in this work clearly reveal that laser fluence or pulse energy, laser pulse overlap on the target surface and laser repetition rate are the key parameters determining material removal rate and nanoparticle generation efficiency. The investigations show significant increase of several factors in nanoparticle productivity. Beside laser fluence we observed that a specific laser pulse overlap is required for increase of nanoparticle productivity. Investigations show that interpulse distance of 75 µm associated with 4 kHz laser frequency result in significant increase of material removal rate by factor 3 compared to machining in pulse overlap mode. Furthermore, material removal rate could be increased by factor 7 only by adjusting repetition rate from 9 kHz to 4 kHz using equal laser fluence and pulse overlap. In both cases we concluded that laser shielding on previously ejected nanoparticles combined with optimized temperature gradient occurred in the target material may play the important role in the enhancement of nanoparticle productivity. Using optimized laser and process parameters, 21.5 mg/min of ceramic nanoparticle productivity was reached by 4.65 mJ focalized laser pulse energy in aqueous media.

1.
Nikolay
,
D.
,
Kollenberg
,
W.
,
Deller
,
K.
,
Oswald
,
M.
,
Tontrup
,
C.
(
2006
)
Manufacturing and properties of ZTA-Ceramics with nanoscaled ZrO2, Ceramic forum international
,
Berichte der Deutschen Keramischen Gesellschaft e.V.
,
83
, No.
4
.
2.
Vollath
,
D.
,
Szabo
D. V.
,
Hauszelt
,
J.
(
1997
)
Synthesis and Properties of Ceramic Nanoparticles and Nanocomposites
.
Journal of the European Ceramic Society
, Volume
17
, Number
11
,
1317
1324
.
3.
Ferkel
,
H.
:
Properties of copper reinforced by laser-generated Al2O3-nanoparticles
(
1999
)
Institut für Werkstoffkunde und Werkstofftechnik, Technische Universität Clausthal; Nanostructured Materials
, Volume
11
, Issue
5
,
595
602
.
4.
Anastas
,
P.T.
,
Warner
,
J.C.
(
1998
)
Green Chemistry: Theory and Practice
(
Oxford University Press
,
New York
, p.
160
5.
Breitung-Faes
,
S.
,
Kwade
,
A.
(
2006
)
Mahlkörpereinfluss bei der Nanozerkleinerung in Rührwerkskugelmühlen
.
Chemie Ingenieur Technik
, Vol.
78
, Issue
9
, p.
1339
.
6.
Sattari
,
R.
,
Dieling
,
C.
,
Barcikowski
,
S.
,
Chichkov
,
B.
(
2008
)
Laser-based Fragmentation of Microparticles for Nanoparticle Generation
.
JLMN-Journal of Laser Micro / Nanoengineering
, Volume
3
, No.
2
,
100
105
.
7.
Pyatenko
,
A.
,
Shimokawa
,
K.
,
Yamaguchi
,
M.
,
Nishimura
,
O.
,
Suzuki
,
M.
(
2004
)
Synthesis of silver nanoparticles by laser ablation in pure water
,
Appl. Phys. A
79
,
803
806
.
8.
Yang
,
G. W.
(
2007
)
Laser ablation in liquids: Applications in the synthesis of nanocrystals
,
Progress in Material Science
52
,
648
698
.
9.
Wang
,
X.
,
Shepard
,
J. D.
,
Fraser
,
C. D.
,
Duncan
,
P. H.
(
2008
)
Optimized Nanosecond Pulsed Laser Micromachining of Y-TZP Ceramics
,
Journal American Ceramic Society
91
[
2
],
391
397
.
10.
Barcikowski
,
S.
,
Menéndez-Manjón
,
A.
,
Chichkov
,
B.
,
Brikas
,
M.
,
Račiukaitis
,
G.
(
2007
)
Generation of nanoparticle colloids by picosecond and femtosecond laser ablation in liquid flow
.
Appl. Phys. Lett.
91
,
083113
,
1
3
11.
Bulgakova
,
N. M.
,
Bulkakov
,
A. V.
(
2001
)
Pulsed laser ablation of solids: transition from normal vaporization to phase explosion
,
Appl. Phys.
A73
,
199
208
.
12.
Miotello
,
A.
,
Kelly
,
R.
(
1999
)
Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature
,
Appl. Phys.
A69
,
67
73
.
13.
Mafuné
,
F.
,
Kondow
,
T.
(
2004
)
Selective laser fabrication of small nanoparticles and nano-networks in solution by irradiation of UV pulsed laser onto platinum nanoparticles
,
Chemical Phys. Letters
, Volume
383
, Issues
3-4
, 8,
343
347
14.
Besner
,
S.
,
Kabashin
,
A.V.
,
Winnik
,
F.M.
,
Meunier
,
M.
(
2008
)
Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions
,
Appl. Phys. A
DOI .
15.
Barcikowski
,
S.
,
Hahn
,
A.
,
Kabashin
,
A. V.
,
Chichkov
,
B. N.
(
2007
)
Properties of nanoparticles generated during femtosecond laser machining in air and water
Journal of Applied Physics A.
,
87
,
47
55
This content is only available via PDF.
You do not currently have access to this content.