Nanosize devices, including electronic, photonic, spintronic and circuit combinations, are driving the creation of new processing paradigms as photolithography and ion implantation technologies reach their practical dimensional limits. As device dimensions decrease facilities costs to support more stringent clean room, deposition, alignment, pitch/location and catalyzing, handling, transferring and assembly of nanomaterial subsystems increase. New laser based technologies that 1) enable controlled phase transformations to create nanostructures in-situ and 2) doping of and new multi-charged carriers, are the building blocks for embedded nanodevices fabricated using a versatile and compact laser processing system. This nanosecond pulsed laser direct-write and doping technique is demonstrated for in situ fabrication of embedded carbon-rich silicon carbide nanoribbon electrically conductive heterostruture (CNR/SiC) in a single crystal 4H-SiC wafer. Characterization by high resolution transmission electron microscope and selected area electron diffraction pattern revealed the presence of nanosize crystalline ribbons with a hexagonal graphite structure in the heat-affected zone below the decomposition temperature isotherm in the SiC epilayer. The nanoribbons exist in three layers each being approximately 50-60 nm wide, containing 15-17 individual sheets. These nanoribbons are then selectively laser doped with elements including N, Al, Cr and Se to create semiconductive structures.

1.
Michael E.
Levinshtein
,
Sergey L.
Rumayantsev
and
Michael S.
Shur
,
Properties of Advanced Semiconductor Materials
, 1st Edition (
John Wiley & Sons, Inc.
,
New York
,
2001
), pp.
93
147
.
2.
H.
Dia
,
E.
Wong
,
Y.
Lu
,
S.
Fan
and
C.
Lieber
,
Nature
,
375
(
1995
)
769
.
3.
M.
Kusunoki
,
J.
Shibata
,
M.
Rokkaku
and
T.
Hirayama
.”,
Jpn. J. Appl. Phys.
37
(
1995
) L
605
.
4.
Y.
Zhang
,
T.
Ichihashi
,
E.
Landree
,
F.
Nihey
and
S.
Iijima
,
Science
,
285
(
1999
)
1719
.
5.
Y.
Satio
,
S.
Uemera
and
K.
Hamaguchi
,
Jpn. J. Appl. Phys.
.
37
(
1998
)
L346
.
6.
Q.
Wang
,
T.
Corrigan
,
J.
Dai
,
R.
Chang
and
A.
Krauss
,
Appl. Phys. Lett.
.
70
(
1998
)
3308
.
7.
Q.
Wang
,
A.
Setlur
,
J.
Lauerhass
,
J.
Dai
,
E.
Seeling
and
R.
Chang
.
Appl. Phys. Lett.
72
(
1998
)
2912
.
8.
N.
Taguchi
, US Patent No. 3, 695, 848, (
1972
).
9.
N.
Quick
, US Patents No. 5, 145, 741 (Sept. 1992), No. 5,837,607(Nov. 1998), No. 6,025,607 (Feb. 2000), No. 6,054,375 (April 2000), No. 6,271,576 (Aug 2001), No. 6,670,693 (Dec. 2003), No. 6,939,748 (Sept. 2005),
N.
Quick
,
A.
Kar
and
I
Salama
No. 7,268,063 (Sep.
2007
).
10.
I.
Salama
,
N.
Quick
and
A.
Kar
,
J. Elec. Mats.
31
(
3
) (
2002
)
200
.
11.
I.
Salama
,
N.R.
Quick
and
A.
Kar
, “
Laser synthesis of carbon-rich SiC ribbons
”,
JAP
, Vol
93
No.
11
(
2003
) pp
9275
9281
.
12.
I.
Salama
,
N.R.
Quick
and
A.
Kar
Microstructural Effects on Electrical Resistance in Laser-treated Silicon Carbide
Journ. of Materials Science
,
40
(
2005
)
3969
3980
.
13.
K.
Andrews
,
D.
Dyson
and
S.
Keown
“Interpretation of Electron Diffraction Patterns”, 2nd Edition (
Plenum Press
,
New York
,
1971
) p
212
.
14.
Z.
Tian
,
N.
Quick
and
A.
Kar
,
Acta Materialia
,
54
(
2006
)
4273
4283
.
15.
S.
Bet
,
N.
Quick
and
A.
Kar
,
Acta Materialia
,
56
(
2008
)
1857
1867
.
This content is only available via PDF.
You do not currently have access to this content.