Laser direct-write patterning methods are traditionally limited by the diffraction limit to size scales several hundreds of nanometers at the minimum. In this work, we demonstrate a new method of laser based patterning that overcomes these limitations by taking advantage of near-field enhancement at the surface of dielectric microspheres. Polystyrene microspheres are trapped in CW Bessel beam laser traps above a polyimide surface. A second, pulsed ultraviolet laser gets focused through the bead, and produces nanometer scale features on the substrate. The full width, half maximum of the features generated by this technique is measured and analyzed along with Finite Difference Time Domain simulations to predict the effects of bead size and pulsed laser energy. It is demonstrated that using a 0.76 µm sphere to focus the processing laser results in spots with an average size of 130 nm and a standard deviation of 38 nm, showing that spots with sizes below the diffraction limit can be generated.

1.
Kawata
,
S.
,
Sun
,
H.-B.
,
Tanaka
,
T.
&
Takada
,
K.
(
2001
)
Finer features for functional microdevices
,
Nature
412
,
697
698
.
2.
Hwang
,
D.J.
,
Chimmalgi
,
A.
&
Grigoropoulos
,
C.P.
(
2006
)
Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes
,
J. Appl. Phys.
99
,
044905
.
3.
Chimmalgi
,
A.
,
Grigoropoulos
,
C.P.
&
Komvopoulos
,
K.
(
2005
)
Surface nanostructuring by nano-femtosectond laser-assisted scanning force microscopy
,
J. Appl. Phys.
97
,
104319
.
4.
Chen
,
Y.J.
,
Hsu
,
J.H.
&
Lin
,
H.N.
(
2005
)
Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process
,
Nanotechnology
16
,
1112
1115
.
5.
Arnold
,
C.B.
,
Serra
,
P.
&
Pique
,
A.
(
2007
)
Laser direct write of complex materials
,
MRS Bull.
32
,
23
31
.
6.
McLeod
,
E.
&
Arnold
,
C.B.
(
2008
)
Subwavelength direct-write nanopatterning using optically trapped microspheres
,
Nature Nanotech.
3
,
413
417
.
7.
McGloin
,
D.
&
Dholakia
,
K.
(
2005
)
Bessel beams: Diffraction in a new light
,
Contemp. Phys.
46
,
15
28
.
8.
Yee
,
K.S.
(
1966
)
Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media
,
IEEE T. Antenn. Propag.
AP-14
,
302
307
.
9.
Verwey
,
E.J.W.
&
Overbeek
,
J.T.G.
(
1948
)
Theory of the stability of lyophobic colloids
,
Elsevier Publishing Company, Inc.
,
10.
Mur
,
G.
(
1981
)
Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations
,
IEEE T. Electromagn. C
.
EMC-23
,
377
382
.
11.
Piglmayer
,
K.
,
Arenholz
,
E.
,
Ortwein
,
C.
,
Arnold
,
N.
&
Bauerle
,
D.
(
1998
)
Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide
,
Appl. Phys. Lett.
73
,
847
849
.
12.
Himmelbauer
,
M.
,
Arenholz
,
E.
,
Bauerle
,
D.
&
Schilcher
,
K.
(
1996
)
Uv-laser-induced surface topology changes in polyimide
,
Appl. Phys. A
63
,
337
339
.
13.
Lu
,
Q.-H.
,
Li
,
M.
,
Yin
,
J.
,
Zhu
,
Z.-K.
&
Wang
,
Z.-G.
(
2001
)
Polyimide surface modification by pulsed ultraviolet laser irradiation with low fluence
,
J. Appl. Polym. Sci.
82
,
2739
2743
.
14.
Harada
,
Y.
&
Asakura
,
T.
(
1996
)
Radiation forces on a dielectric sphere in the rayleigh scattering regime
,
Opt. Commun.
124
,
529
541
.
This content is only available via PDF.
You do not currently have access to this content.