Shape memory alloys (SMA) are of increasing interest in research and industry due to their outstanding properties. Besides the shape memory effect (SME), these properties include high mechanical strength and biocompatibility, which is of high importance for medical applications. The SME offers new possibilities in the design of implantable components, e.g. in the field of fracture healing. Conventional implants, which are connected to bones, cannot change mechanical properties such as stiffness, length and torsion resistance without additional surgeries once implanted. Implants made of SMA instead may change their properties by contactless application of heat from the outside by induction. This paper presents a possible design for an osteosynthetic implant made from NiTi elements. Obviously, it is necessary to machine these elements from the NiTi sheet material by suitable processing methods that allow for a high precision and keeping the SME. Therefore, laser welding has been investigated due to its local energy distribution and small heat affected zones. Temperature measurements and metallographic investigations are presented to show the affected area where the SME is lost. Using a specially designed induction coil, the remaining SME is evaluated, the shape change is detected, and the design of the implant is iteratively improved.

1.
Chang
,
L. C.
&
Read
,
T. A.
(
1951
)
Plastic Deformation and Diffusionsless Phase Change in Metals - The Gold-Cadmium Beta Phase
,
AIME
191
,
47
52
.
2.
Buehler
,
W. J.
,
Gilfrich
,
J. V.
&
Wiley
,
R. C.
(
1963
)
Effect of low-temperature phase changes on the mechanical properties of alloys near composition tini
,
Journal of Applied Physics
34
,
1475
1477
.
3.
Lipscomb
,
I. P.
&
Nokes
,
L. D. M.
(
1996
)
The Application of Shape Memory Alloys in Medicine
,
John Wiley & Sons
,
141
p.
4.
Dai
,
K.
(
2000
) Ti-Ni-Mo Shape-Memory Alloys for Medical Applications, in
L.
Yahia
(ed)
Shape memory implants
,
Springer
,
105
128
.
5.
Pelton
,
A.
,
Stoeckel
,
D.
&
Duerig
,
T.
(
2000
)
Medical Uses of Nitinol
, in
Proceedings of the International Symposium on Shape Memory Materials: Materials Science Forum
Vols.
327-328
,
Kanazawa, Japan
,
63
70
.
6.
Otsuka
,
K.
&
Kakeshita
,
T.
(
2002
)
Science and Technology of Shape-Memory Alloys: New Developments
,
MRS Bulletin
27
,
91
98
.
7.
Tang
,
R. G.
,
Dai
,
K. R.
&
Chen
,
Y. Q.
(
1996
)
Application of a NiTi staple in the metatarsal osteotomy
,
Biomed Mater Eng
6
,
307
312
.
8.
Wever
,
D. J.
,
Elstrodt
,
J. A.
,
Veldhuizen
,
A. G.
&
v Horn
,
J. R.
(
2002
)
Scoliosis correction with shape-memory metal: results of an experimental study
,
Eur Spine J
11
,
100
106
.
9.
Prymak
,
O.
,
Bogdanski
,
D.
,
Koeller
,
M.
,
Esenwein
,
S. A.
,
Muhr
,
G.
,
Beckmann
,
F.
,
Donath
,
T.
,
Assad
,
M.
&
Epple
,
M.
(
2005
)
Morphological characterization and in vitro biocompatibility of a porous nickel– titanium alloy
,
Biomaterials
26
,
5801
5807
.
10.
Ryhanen
,
J.
,
Kallioinen
,
M.
,
Serlo
,
W.
,
Peramaki
,
P.
,
Junila
,
J.
,
Sandvik
,
P.
,
Niemela
,
E.
&
Tuukkanen
,
J.
(
1999
)
Bone healing and mineralization, implant corrosion, and trace metals after nickel-titanium shape memory metal intramedullary fixation
,
J Biomed Mater Res
47
,
472
480
.
11.
Shabalovskaya
S. A.
(
2002
)
Surface, corrosion and biocompatibility aspects of Nitinol as an implant material
,
Bio-Medical Materials and Engineering
12
,
69
109
.
12.
Perren
,
S. M.
(
2002
)
Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology
,
J Bone Joint Surg Br
84
,
1093
1110
.
13.
Perren
,
S. M.
(
1979
)
Physical and biological aspects of fracture healing with special reference to internal fixation
,
Clin Orthop Relat Res
138
,
175
196
.
14.
Kujala
,
S.
,
Tuukkanen
,
J.
,
Jamsa
,
T.
,
Danilov
,
A.
,
Pramila
,
A.
&
Ryhanen
,
J.
(
2002
)
Comparison of the bone modeling effects caused by curved and straight nickel–titanium intramedullary nails
,
Journal of Materials Science: Materials in Medicine
13
,
1157
1161
.
15.
Fargas
,
M.
,
Herzog
,
D.
&
Meier
,
O.
(
2007
)
Laser Processing of Shape Memory Alloys for the Development of Implantable Components
, in
Proceeding of the International Medical Devices
,
IMD, ALAC
,
Burlington, USA
.
16.
Duerr
,
U.
,
Holtz
,
R.
&
Kohlschuetter
,
C.
(
2002
)
Neuester Stand zum Einsatz von gepulsten Nd:YAG Lasern
,
Schweissen und Scheiden
10
,
564
573
.
17.
Richter
,
K.
,
Reisgen
,
U.
,
Behr
,
W.
&
Holtz
,
R.
(
2007
)
Welding of titanium and other refractory metals with a free pulse shaping laser
,
Journal of Laser Applications
19
,
116
123
.
18.
Haferkamp
,
H.
,
von Alvensleben
,
F.
,
Nolte
,
S.
,
Kamlage
,
G.
&
Paschko
,
S.
(
1999
)
Lasermaterialbearbeitung von Formgedächtnis-legierungen
,
LaserOpto
11
,
58
62
.
19.
Rho
,
J. Y.
,
Ashman
,
R. B.
&
Turner
,
C. H.
(
1993
)
Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements
,
J Biomech
26
,
111
119
.
20.
Giroux
,
E.
,
Maglione
,
M.
,
Gueldry
,
A.
&
Mantoux
,
J.
(
1996
)
Electromagnetic heating of a shape memory alloy translator
,
Appl. Phys
29
,
923
928
.
This content is only available via PDF.
You do not currently have access to this content.