Microscale Laser Shock Processing (μLSP) can generate compressive residual stress in Micro Electromechanical Systems (MEMS) components through laser-induced plasma and pressure pulse for improving fatigue performance and wear resistance. It’s the generation of shock wave that produces plastic deformation and residual stress. For the first time, the propagation laws of shock wave in material treated by microscale laser beam were researched, and the influence factors, including the selected path and its mode, length of selected path, radius of the laser beam, laser intensity and number of shock impact, were discussed, which compared with ones of millimeter level for the laws of propagation and attenuation. The thickness of target material suitable for measuring shock wave was proved theoretically. All the results established theoretical foundation for the research and experiment of stress wave in materials for μLSP.

1.
Walraven
,
J.A.
,
Mani
,
S.S.
,
Fleming
,
J.G.
,
Headley
,
T.J.
,
Kotula
,
P.G.
,
Pimentel
,
A.A.
,
Rye
,
M.J.
,
Tanner
,
D.M.
&
Smith
,
N.F.
(
2000
)
Failure Analysis of Tungsten Coated Polysilicon Micromachined Microengines, MEMS Reliability for Critical Applications
,
Proceedings of SPIE
4180
,
49
57
.
2.
Frederick
,
Kevin M.
&
Fedder
,
Gary K.
(
2000
)
Mechanical Effects of Fatigue and Charge on CMOS MEMS, MEMS Reliability for Critical Applications
,
Proceedings of SPIE
4180
,
108
116
.
3.
Zhang
,
W.
&
Yao
,
Y.L.
(
2004
)
Microscale laser shock peening of thin films, part1: experiment, modelling and simulation
,
ASME Journal of Manufacturing Science and Engineering
126
(
1
),
10
17
.
4.
Chen
,
H.Q.
,
Wang
,
Y.
,
Kysar
,
J.W.
&
Yao
,
Y.L.
(
2004
)
Advances in Micro Scale Laser Shock Peening
,
Tsinghua Science and Technology
9
(
5
),
506
518
.
5.
Zhang
W.
&
Yao
Y.L.
(
2002
)
Micro scale laser shock processing of metallic components
,
Journal of Manufacturing Science and Engineering
124
(
2
),
369
378
.
6.
Zhang
,
W.
&
Yao
,
Y.L.
(
2000
)
Improvement of Laser Induced Residual Stress Distributions via Shock Waves
,
Proc. ICALEO’00, Laser Materials Processing
89
,
E183
192
.
7.
Chen
H.Q.
&
Yao
,
Y.L.
(
2004
)
Modelling Schemes, Transiency and Strain Measurement for Microscale Laser Shock Processing
,
Journal of Manufacturing Processes
6
(
2
),
155
169
.
8.
Wang
,
Y.N.
,
Kysar
,
J.W.
&
Yao
,
Y.L.
(
2008
)
Analytical solution of anisotropic plastic deformation induced by micro-scale laser shock peening
,
Mechanics of Materials
40
,
100
114
.
9.
Clauer
,
A.H.
(
1996
)
Laser Shock Peening for Fatigue Resistance, Surface Performance of Titanium
,
Gregory
,
J.K.
,
Rack
,
H.J.
, and
Eylon
,
D.
(ed), TMS,
Warrendale, PA
,
The Metal Society of ASME
,
217
230
.
10.
Clauer
,
A.H.
,
Holbrook
,
J.H.
&
Fairand
,
B.P.
(
1981
)
Effects of laser induced shock waves on metals, Shock Waves and High strain Rate Phenomena in Metals
,
Meyers
,
M. A.
&
Murr
,
L.E.
(ed),
Plenurn Publishing Corporation
,
New York
,
675
703
.
11.
Fairand
,
B.P.
&
Clauer
,
A.H.
(
1978
)
Laser generation of high-amplitude stress waves in materials
.
Journal of Applied Physics
50
,
1497
1502
.
12.
Fairand
,
B.P.
,
Clauer
,
A. H.
,
Jung
R.G.
&
Wilcox
,
B.A.
(
1974
)
Quantitative assessment of laser-induced stress wave generated at confined surfaces
,
Jounal of Applied Physics
25
,
431
433
.
13.
O’Keefe
,
J.D.
&
Skeen
,
C.H.
(
1972
)
Laser-induced stress-wave and impulse augmentation
,
Journal of Applied Physics
21
,
464
466
.
14.
Hoffman
,
C.G.
(
1974
)
laser-target interactions
,
Journal of Applied Physics
45
,
2125
8
.
15.
Yang
,
L.C.
(
1974
)
Stress waves generated in thin metallic films by a Q-switched ruby laser
,
Journal of Applied Physics
45
(
6
),
2601
2607
.
16.
Romain
,
J.P.
,
Cottet
,
F.
,
Hallouin
,
M.
,
Fabbro
,
R.
,
Faral
,
B.
&
Pepin
,
H.
(
1986
)
laser shock experiments at pressures above 100Mbar
,
Physica
139-140B
,
595
8
.
17.
Ling
,
P.
&
Wight
,
C.A.
(
1995
)
Laser-generated shock waves in thin films of energetic materials
,
Journal of Applied Physics
78
(
12
),
7022
7025
.
18.
Couturier
,
S.
,
Resseduier
,
M.DE
,
Hallouin
,
M.
,
Romain
,
J.P.
&
Bauer
,
F.
(
1996
)
Shock profile induced by short laser pulses
,
Journal of Applied Physics
79
,
9338
9342
.
19.
Zhang
,
W.
&
Yao
,
Y.L.
2001
Modeling and Simulation Improvement in Laser Shock Processing
,
Proc. ICALEO’01
, Section A,
59
68
.
20.
Zhang
,
W.
&
Yao
,
Y.L.
(
2001
)
Microscale laser shock peening-Modelling, Testing and Microstructure Characterization
,
Journal of Manufacturing Process
3
(
2
),
128
143
.
21.
Hibbitt, Karlsson & Sorensen Inc
(
2004
)
ABAQUS Software User’s Manual version 6.5
.
22.
Shi
,
Y.P.
&
Zhou
,
Y.R.
(
2006
)
Detailed Interpretation of Examples for ABAQUS Finite Element Analysis
, China machine press.
23.
Zhang
,
W.
&
Yao
,
Y.L.
(
2001
)
Feasibility study of inducing desirable residual stress distribution in laser micromachining
,
Transactions of the North American Manufacturing Research Institution of SME
29
,
413
420
.
24.
Peyre
,
P.
,
Chaieb
,
I.
&
Braham
,
C.
(
2007
)
FEM calculation of residual stresses induced by laser shock processing in stainless steels
,
Modelling and Simulation in Material Science and Engineering
15
,
205
221
.
25.
Wu
,
B.X.
&
Shin
,
Y.C.
(
2007
)
Two dimensional hydrodynamic simulation of high pressures induced by high power nanosecond laser-matter interactions under water
,
Journal of Applied Physics
101
(
10
),
103514
103514.8
.
26.
Johnson
,
J.N.
&
Rohde
,
R.W.
(
1971
)
Dynamic deformation twining in shock-loaded iron
,
Journal of Applied Physics
42
,
4171
3
.
27.
Ding
,
K.
&
Ye
,
L.
(
2006
)
Laser Shock Peening Performance and Process Simulation
,
Boca Raton
,
CRC Press
,
162
pp.
This content is only available via PDF.
You do not currently have access to this content.