Laser transmission welding (LTW), a technique to join thermoplastic components, involves a laser beam passing through a laser-transmitting part being absorbed by a laser-absorbing part at the weld interface. The heat generated at the interface melts a thin layer of the plastic in both parts and forms a joint. Laser-absorbing agents such as dyes or soot particles are added to the laser-absorbing part to make it absorbing to the laser beam. Thermal and optical interaction of the soot particles and polymer with laser beam determines heating, melting, and consequently welding of plastics. To form a strong bond, it is important that the weld interface be exposed to sufficient heat to melt the polymer without degrading it. This paper investigates the thermal response of soot particles to a diode laser heat source. A thermal model is presented herein for a soot particle that is surrounded by a semi-crystalline material (PA6) and solved using finite volume technique. The results are then compared to the ones obtained from a finite element analysis solved with a commercial software (ANSYS®). The micro-scale model predictions for the peak temperature of the soot particle appear to be reasonable when compared with the results of the macro-scale finite element models for the same process parameters and set up developed in the previous work of the authors.

1.
Kagan
,
V.A.
,
Bray
,
R.G.
&
Kuhn
,
W.
(
2002
)
Laser transmission welding of semi-crystalline thermoplastics-part i: optical characterization of nylon based plastics
,
J Reinf Plas and Comp
,
21
(
12
),
1101
1122
.
2.
Foster
,
P.J.
&
Howarth
,
C.R.
(
1968
)
Optical constants of carbons and coals in the infrared
,
Carbon
,
6
,
719
729
.
3.
Farias
,
T.L.
,
Carvalho
,
M.G.
,
Koylu
,
U.O.
&
Faeth
,
G.M.
(
1995
)
Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot
,
ASME Journal of Heat Transfer
,
117
,
152
159
.
4.
Habib
,
Z.G.
&
Vervisch
,
P.
(
1988
)
Combustion Science Technology
,
59
,
261
274
.
5.
Mewes
,
B.
&
Seitzman
,
J.M.
(
1997
)
Soot volume fraction and particle size measurements with laser-induced incandescence
,
Applied Optics
,
36
(
3
),
709
717
.
6.
Zhu
,
J.
,
Choi
,
M.Y.
,
Mulholland
,
G.W.
,
Manzello
,
S.L.
,
Gritzo
,
L.A.
&
Suo-Anttila
,
J.
(
2002
)
Measurement of visible and near-IR optical properties of soot produced from laminar flames
,
Proceedings of the Combustion
,
29
,
2367
2374
.
7.
Koylu
,
U.O.
&
Faeth
,
G.M.
(
1994
)
Optical properties of soot in buoyant laminar diffusion flames
,
ASME Journal of Heat Transfer
,
116
,
971
979
.
8.
Wang
,
C.Y.
,
Bates
,
P.J.
,
Aghamirian
,
M.
,
Zak
,
G.
,
Nicholls
,
R.
&
Chen
,
M.
(
2007
)
Quantitative morphological analysis of carbon black in polymers used in laser transmission welding
,
Welding in the World
,
5
/
6
.
9.
Zhu
,
J.
,
Choi
,
M.Y.
,
Mullholland
,
G.W.
&
Gritzo
,
L.A.
(
2000
)
Measurement of soot optical properties in the near-infrared spectrum
,
International Journal of Heat and Mass Transfer
,
43
,
3299
3303
.
10.
Mayboudi
,
L.S.
,
Birk
,
A.M.
,
Zak
,
G.
&
Bates
,
P.J.
(
2008
)
Effect of soot particles on the laser absorption by thermoplastics in laser welding
,
Part B: International Journal of Advances in Mechanics and Applications of Industrial Materials (IJAMAIM)
,
1
(
1
),
47
55
.
11.
Dalzell
,
W.D.
&
Sarofim
,
A.F.
(
1969
)
Optical constants of soot and their application to heat-flux calculations
,
ASME Journal of Heat Transfer
,
91
,
101
104
.
12.
Batten
,
C.E.
(
1985
)
Spectral optical constants of soot from polarized angular reflectance measurements
,
Applied Optics
,
24
(
8
),
1193
1199
.
13.
Schnaiter
,
M.
,
Horvath
,
H.
,
Mohler
,
O.
,
Naumann
,
K.H.
,
Saaothoff
,
H.
&
Schock
,
O.W.
(
2003
)
UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols
,
Journal of Aerosol Science
,
34
,
1421
1444
.
14.
Krishnan
,
S. S.
,
Lin
,
K.C.
&
Faeth
,
G.M.
(
2001
)
Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames
,
Journal of Heat Transfer, Transaction of the ASME
,
123
,
331
339
.
15.
Van-Hulle
,
P.
,
Weill
,
M.E.
,
Talbaut
,
M.
&
Coppalle
,
A.
(
2002
)
Comparison of numerical studies characterizing optical properties of soot aggregates for improved EXSCA measurements
,
Part System Characteristics
,
19
,
47
57
.
16.
Mulholland
,
G.W.
&
Moutan
,
R.D.
(
1999
)
Coupled dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates
,
Combustion and Flame
,
119
,
56
68
.
17.
Dasch
,
C.J.
(
1984
)
Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame
,
Applied Optics
,
23
(
13
),
2209
2215
.
18.
Snelling
,
D.R.
,
Thomson
,
K.A.
,
Smallwood
,
G.J.
,
Gilder
,
O.L.
,
Weckman
,
E.J.
&
Fraser
,
R.A.
(
2002
)
Spectrally resolved measurement of flame radiation to determine soot temperature and concentration
,
AIAA Journal
,
40
(
9
),
1789
1795
.
19.
Liu
,
F.
,
Smallwood
,
G.J.
&
Snelling
,
D.R.
(
2005
)
Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers
,
Journal of Quantitative Spectroscopy and Radiative Transfer
,
93
,
301
312
.
20.
Felske
,
J.D.
,
Charalampopoulos
,
T.T.
&
Hura
,
H.S.
(
1984
)
Determination of the refractive indices of soot particles from the reflectiveities of compressed soot pallets
,
Combustion Science and Technology
,
37
,
263
284
.
21.
Snelling
,
D.R.
,
Liu
,
F.
,
Smallwood
,
G.J.
&
Gulder
,
O.L.
(
2004
)
Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame
,
Combustion and Flame
,
136
,
180
190
.
22.
Smallwood
,
G. J.
,
Snelling
,
D. R.
,
Liu
,
F.
&
Gulfer
,
O. L.
(
2001
)
Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot
,
Journal of Heat Transfer
,
123
,
814
818
.
23.
Siegel
,
R.
&
Howell
,
J.R.
(
1992
)
Thermal radiation heat transfer
,
Taylor and Francis
, third edition.
24.
DSM
,
Manufacturer’s Data Sheet for Akulon
.
25.
Prabhakaran
,
R.
(
2003
)
Laser transmission welding of PA6
, M.Sc. Thesis,
Chemical Engineering Department, Queen’s University
.
26.
Mayboudi
,
L.S.
,
Birk
,
A.M.
,
Zak
,
G.
&
Bates
,
P.J.
(
2006
)
A two-dimensional thermal finite element model of laser transmission welding for T joint
,
Journal of Laser Applications
,
18
(
3
),
192
198
.
27.
Mayboudi
,
L.S.
,
Birk
,
A.M.
,
Zak
,
G.
&
Bates
,
P.J.
(
2006
)
A three-dimensional thermal finite element model of laser transmission welding for T-joint
,
International Journal of Modelling and Simulation
, Accepted on June 11, 2007, Ref:
205
4747
This content is only available via PDF.
You do not currently have access to this content.