For reasons such as high beam quality and stability fiber laser systems have become increasingly more attractive for industrial applications. Fiber lasers typically employ diode lasers as a pump energy source and can comprise several individual stages. For applications not requiring the high beam quality or short pulses that can be generated by fiber lasers optically combined diode laser systems can be used.

We demonstrate a cost-effective, compact and flexible control system consisting of a single board computer and a relay circuit board. It can be used as a control unit for a stand alone fiber or diode laser but also as part of a large system comprising several laser units. The system allows local or remote control via standard interfaces and operates according to safety regulations. Defective units can be replaced and the system can be scaled to a different number of laser units without impact on the control structure.

The application as a control system for the recently released high brightness diode laser that provides 350W of output power in a 200µm core fiber will be presented as an example and the aspects of the combination of multiple units will be discussed.

1.
Rüdiger
Paschotta
,
Johan
Nilsson
,
Anne C.
Tropper
, and
David C.
Hanna
, “
Ytterbium-Doped Fiber Amplifiers
,”
IEEE J. of Quantum Electron.
, vol.
33
, no.
7
,
Jul
1997
2.
D. C.
Hanna
,
R. M.
Percival
,
I. R.
Perry
,
R. G.
Smart
,
P. J.
Suni
,
J. E.
Townsend
, and
A. C.
Tropper
, “
Continuous-wave oscillation of a monomode ytterbium-doped fiber laser
,”
Electron. Lett.
, vol.
24
, pp.
1111
1113
,
1988
3.
J. C.
Mackechnie
,
W. L.
Barnes
,
D. C.
Hanna
, and
J. E.
Townsend
, “
High power ytterbium (Yb3+)-doped fiber laser operating in the 1.12 µm region
,”
Electron. Lett.
, vol.
29
, pp.
52
53
,
1993
4.
D. C.
Hanna
,
R. M.
Percival
,
I. R.
Perry
,
R. G.
Smart
,
P. J.
Suni
, and
A. C.
Tropper
, “
An ytterbium-doped monomode fiber laser: broadband tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm
,”
J. Mod. Opt.
, vol.
37
, pp.
517
525
,
1990
5.
J. Y.
Allain
,
M.
Monerie
,
H.
Poignant
, and
T.
Georges
, “
High-efficiency ytterbium-doped fluoride fiber laser
,”
J. Non-Crystalline Solids
, vol.
161
, pp.
270
273
,
1993
6.
S.
Magne
,
M.
Druetta
,
J. P.
Goure
,
J. C.
Thevenin
,
P.
Ferdinand
, and
G.
Monnom
, “
An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tunability in an external cavity
,”
J. Lumin.
, vol.
60
, pp.
647
650
,
1994
7.
H. M.
Pask
,
R. J.
Carman
,
D. C.
Hanna
,
A. C.
Tropper
,
C. J.
Mackechnie
,
P. R.
Barber
, and
J. M.
Dawes
, “
Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region
,”
IEEE J. Select. Topics Quantum Electron.
, vol.
1
, pp.
2
13
,
1995
8.
C.-H.
Liu
,
B.
Ehlers
,
F.
Doerfel
,
S.
Heinemann
,
A.
Carter
,
K.
Tankala
,
J.
Farroni
,
A.
Galvanauskas
, “
810 W continuous-wave and single-transverse-mode fibre laser using 20 µ m core Yb-doped double-clad fibre
,”
Electron. Lett.
, vol.
40
, no.
23
, pp.
1471
1472
,
Nov
2004
9.
V.
Gapontsev
,
D.
Gapontsev
,
N.
Platonov
,
O.
Shkurikhin
,
V.
Fomin
,
A.
Mashkin
,
M.
Abramov
, and
S.
Ferin
, “
2-kW CW ytterbium fiber laser with record diffraction-limited brightness
,”
Lasers and Electro-Optics Europe, CLEO/Europe
, p.
508
,
Jun
2005
10.
T.
Lauterborn
,
S.
Heinemann
and
A.
Galvanauskas
,
Polarized single transverse mode Yb-doped fiber laser generating up to 200 µJ/6 W with flexible pulse parameters
,”
SSDLTR
,
Los Angeles, CA
,
Jun
2005
, paper Fiber-8
11.
“Industrial Ethernet Infrastructure”,
ARC Advisory Group
,
Dedham, MA
,
Sep
2007
This content is only available via PDF.
You do not currently have access to this content.