Porosity formation of laser beam seams in aluminium alloys is problematic for the properties of the welded pieces. For more than a decade extensive research had been conducted to determine the causes for porosity formation and the design of according welding techniques to suppress porosity. In this paper a novel empirical insight into porosity formation in aluminium alloys is presented. A bifocal hybrid laser system consisting of a combination of an Nd:YAG laser with a high power diode laser, both of 3 kW maximum output power, will be used to obviate this pore formation mechanism additionally explaining some antimonies in experimental measurements of a presumed eigenfrequency of oscillatory keyhole modes. The application of non-invasive process gas shielding by virtue of a novel process gas supply nozzle gives rise to the deduction of another cause of porosity formation. Based on these observations a holistic empirical process model is formulated accounting for well established observations in the past as well as those recent findings. Experimental results prove the success of this approach to suppress process porosity in aluminium.

1.
ISO 13919-2:2001
(
2001
)
Welding - Electron and laser beam welded joints - Guidance on quality levels for imperfections - Part 2: Aluminium and its weldable alloys
.
2.
Katayama
,
S.
;
Kawahito
,
Y.
;
Mizutani
,
M.
(
2007
)
Collaboration of physical and metallurgical viewpoints for understanding and process development of laser welding
,
Proc. of ICALEO
,
Orlando, FL, USA
, p.
360
369
.
3.
Franz
,
T.
(
1998
)
Laserstrahlschweißen mit Nd:YAG-Laser unter Wasser, Bericht aus dem Bremer Institut für Strahltechnik
, doctoral dissertation,
University of Bremen
,
Germany
.
4.
Funk
,
M.
(
1994
)
Absorption von CO2-Laserstrahlung beim Laserstrahlscheißen von Grobblech
, doctoral disseration,
RWTH Aachen
,
Germany
.
5.
Beck
,
M.
(
1996
)
Modellierung des Lasertief-schweißens, Laser in der Materialbearbeitung, Forschungsberichte des ISFW
, doctoral dissertation.
University of Stuttgart
,
Germany
.
6.
Beyer
,
E.
(
1995
)
Schweißen mit Laser: Grundlagen
,
Berlin
,
Springer
.
7.
Sepold
,
G.
;
Bödecker
,
V.
;
Jüptner
,
W.
;
Steffen
,
H.-D.
(
1976
)
The Influence of Electron-and Laser Beam Distribution on Weld Seam Formation
,
Paper 1-1-(3)(S) Japan Weld. Soc.
1976, Vol.
1
, p.
9
14
.
8.
Beske
,
E. U.
;
Meyer-Kobbe
,
C.
(
1991
)
Prozeßdiagnose beim Laserstrahlschweißen
. In:
Laser und Optoelektronik
23
(
3
), p.
134
140
.
9.
Beske
,
E. U.
(
1992
)
Untersuchungen zum Schweißen mit kW Nd:YAG-Laserstrahlung
, doctoral dissertation,
University of Hanover
,
Germany
.
10.
Klassen
,
M.
(
2000
)
Prozeßdynamik und resultierende Prozeßinstabilitäten beim Laserstrahlschweißen von Aluminiumlegierungen, Bericht aus dem Bremer Institut für Strahltechnik
, doctoral dissertation,
University of Bremen
,
Germany
.
11.
Dionisio
,
B.
;
Fabbro
,
R.
;
Sabatier
,
L.
;
Leprince
,
L.
;
Orza
,
J. M.
(
1990
)
Spectroscopic studies of iron plasmas induced by continuous high power CO2 laser
,
Proc. of SPIE
, Vol.
1279
, p.
118
126
.
12.
Mazumder
,
J.
;
Rockstroh
,
T. J.
(
1987
)
Spectroscopic studies of plasma during cw laser materials interaction
,
J. Appl. Phys.
(1987), Vol.
61
(
1
), p.
917
923
.
13.
Landolt-Börnstein
(
2004
) Numerical data and functional relationships in science and technology. Group VIII Vol. 1C: Laser physics and applications.
Subvolume C: Laser Applications
:
Hügel
,
H
,
Dausinger
,
F.
: Fundamentals of laser-induced processes,
Berlin
,
Springer
.
14.
Fabbro
,
R.
(
2007
)
The contribution of Prof. Akira Matsunawa to understanding of laser welding processes
,
Proc. of ICALEO
,
Orlando, FL, USA
, p.
372
375
.
15.
RAPP
,
J.
(
1996
)
Laserschweißeignung von Aluminiumwerkstoffen für Anwendungen im Leichtbau, Laser in der Materialbearbeitung, Forschungsberichte des ISFW
, doctoral dissertation,
University of Stuttgart
,
Germany
.
16.
Seto
,
N.
;
Katayama
,
S.
;
Matsunawa
A.
(
1999
)
High-Speed simultaneous observation of plasma and keyhole behaviour during high power CO2 laser welding
.
Proc. of ICALEO
,
San Diego, USA
, p.
E19
27
.
17.
Matsunawa
,
A.
;
Kim
,
J. D.
Seto
,
N.
;
Mitzutani
,
N.
;
Katayama
,
S.
(
2000
)
Dynamics of keyhole and molten pool in laser welding
,
J. Laser Appl.
, Vol.
10
, p.
247
254
.
18.
Katayama
,
S.
;
Seto
,
N.
;
Mizutani
,
M.
;
Matsunawa
,
A.
(
2000
)
Formation Mechanism of Porosity in High Power YAG Laser welding. In
:
Proc. of ICALEO
, Vol.
89
,
Dearborn, USA
, p.
C16
25
.
19.
Katayama
,
S.
;
Uchiumi
,
S.
;
Briand
,
F.
(
2006
)
Production of sound Deep-Penetration Hybrid Weld in Aluminum Alloy with YAG Laser and MIG Arc
,
Proc. of ICALEO
,
Scottsdayle, USA
, p.
953
959
.
20.
Tsukamoto
,
S
;
Kawaguchi
,
I.
;
Arakane
,
G.
;
Honda
,
H.
(
2004
)
Prevention of weld defect by power modulation in high power laser welding
,
Proc. of 4th LANE 2004, Conference on Laser Assisted Net Shape Engineering
,
Erlangen, Germany
, p.
119
130
.
21.
Berkmanns
,
J.
(
1998
)
Steigerung der Prozeßstabilität beim Laserstrahlschweißen von Aluminiumwerkstoffen mit Strahlleistungen bis 6 kW und Tragverhalten der Verbindungen, Laser in der Materialbearbeitung
, Forschungsberichte des ISFW doctoral dissertation,
RWTH Aachen
,
Germany
.
22.
Trautmann
,
A.
;
Roeren
,
S.
;
Zaeh
,
M. F.
(
2004
)
Welding of Extruded Aluminium Profiles by a Hybrid Bifocal Laser System
,
Proc. of 4th LANE, Conference on Laser Assisted Net Shape Engineering
,
Erlangen, Germany
, p.
169
180
.
23.
Trautmann
,
A.
;
Zaeh
,
M. F.
(
2005
)
Hybrid Bifocal Laser Welding of Aluminum
.
Proc. of ICALEO
,
Miami, FL, USA
, p.
153
162
.
24.
Trautmann
,
A.
;
Zäh
,
M. F.
(
2007
)
Increase of Process Robustness of Zinc-Coated Steels in Bifocal Hybrid Laser Welding
;
Proc. of 7th LANE, Conference on Laser Assisted Net Shape Engineering
,
Erlangen, Germany
, p.
197
208
.
25.
Duley
,
W. W.
(
1998
)
Laser Welding
,
Wiley-Interscience publication
.
26.
Katayama
,
S.
;
Kobayashi
,
Y.
;
Mitzutani
,
M
;
Matsunawa
,
A.
(
2001
)
Effect of vacuum on penetration and defects in laser welding
,
Journal of Laser Applications
,
October
2001, Vol.
13
, Issue
5
, p.
187
192
.
27.
Bachhofer
,
A.
;
Rapp
,
J.
;
Schinzel
,
C.
;
Heimerdinger
,
C.
;
Hüger
,
H.
(
1997
)
Laserstrahlschweißen von Aluminiumlegierungen unter reaktiver Schutzgasatmosphäre, Teil I: Energieeinkopplung und Prozessstabilität; Aluminium
,
International Journal for Industry, Research and Application
,
73
(
1997
) 11, p.
790
795
.
28.
Zäh
,
M. F.
;
Trautmann
,
A.
(
2004
)
Vergleich des hybriden, bifokalen Laserschutzgasschweißens mit Laser-MIG-Hybridverfahren; Aluminium
,
International Journal for Industry, Research and Application
,
80
(
2004
) 12, p.
1387
1391
.
This content is only available via PDF.
You do not currently have access to this content.