Laser-assisted chemical vapor deposition (LCVD), in combination with 3-D self-assembly of colloidal silica particles, was used to fabricate 3-D photonic bandgap (PBG) structures. Multilayer of colloidal silica particles was formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave (CW) CO2 laser (10.6 µm wavelength) was used as the energy source in the LCVD process. A silica-core-silicon-shell PBG structure was obtained. This technique is capable of fabricating structures with various PBGs by obtaining different silicon shell thickness with different LCVD parameters. This enables us to engineer the position and width of PBGs by flexibly controlling the core-shell geometry. Face-centered cubic (FCC) PBG structures were composed by “effective atom” of silica-core-silicon-shell. In this study, a series of PBG structures with designed PBGs were obtained with different experimental conditions. Incidence-angle-resolved spectroscopic ellipsometer was used to identify specific PBGs. The refractive indices of the “effective atom” with different silicon-shell thickness were calculated using Bruggeman composite model. The plain-wave expansion was used to simulate the photonic dispersion diagrams, which agreed with the experimental results.

1.
Yablonovitch
,
E.
, (
1987
)
Inhibited spontaneous emission in solid-state physics and electronics
,
Physics Review Letter
58
,
2059
2062
.
2.
John
,
S.
, (
1987
)
Strong localization of photons in certain disordered dielectric super lattices
,
Physics Review Letter
58
,
2486
2489
.
3.
Cuisin
,
C.
,
Chelnokov
A.
,
Lourtioz
,
J.M.
,
Decanini
,
D.
&
Chen
,
Y.
(
2000
)
Fabrication of three-dimensional photonic structures with submicrometer resolution by x-ray lithography
,
J. Vac Sci. Technol B
18
(
6
),
3505
3509
.
5.
Miklyaev
,
Yu. V.
,
Meisel
,
D. C.
,
Blanco
A.
,
Freymann
,
G.
Von, Busch
K.
,
Koch
W.
,
Enkrich
,
C.
,
Deubel
,
M.
&
Wegener
,
M.
(
2003
)
Three-dimensional face-centered-cubic photonic crystal templates by laser holography fabrication-optical characterization and band-structure calculations
,
Applied Physics Letter
82
,
1284
1286
.
6.
Wang
,
K.
,
Chelnokov
,
A.
,
Rowson
,
S.
,
Garoche
,
P.
&
Lourtioz
,
J.M.
(
2000
)
Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystals
,
Journal of Physics D
33
,
L119
L123
pp.
7.
Tetreault
,
N.
,
Freymann
,
G. V.
,
Deubel
,
M.
,
Hermatschweiler
,
M.
,
Willard
,
F. P.
,
John
,
S.
,
Wegener
M.
&
Ozin
,
G. A.
(
2005
)
New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates
”,
Advanced Material
18
,
457
460
.
8.
Gratson
,
G. M.
,
Santamaria
,
F. G.
,
Lousse
,
V.
,
Xu
,
M.
,
Fan
,
S.
,
Lewis
,
J. A.
&
Braun
,
P. V.
(
2005
)
Direct-Write assembly of three-dimensional photonic crystals: conversation of polymer scaffolds to silicon hollow-woodpile structure
,
Advanced. Material
18
,
461
465
.
9.
Lopez
,
C.
(
2005
)
Materials Aspects of Photonic Crystal
,
Advanced Materials
15
(
20
),
1679
1704
.
10.
Giesche
,
H.
&
Matijevic
,
E.
(
1994
)
Preparation, characterization and sinterability of well-defined silica/yttria powders
,
Journal of the European Ceramics Society
14
,
205
208
.
11.
Dimitrov
,
A.
&
Nagayama
,
K
(
1996
) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,
Langmuir
12
,
1303
1311
.
12.
Ye
,
YH
,
LeBlanc
,
F.
,
Hache
,
A.
&
Truong
,
V.V.
(
2001
)
Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality
,
Applied Physics Letter
78
(
1
),
52
54
.
13.
Jiang
,
P.
,
Ostojic
,
G.
,
Narat
,
R.
,
Mittleman
,
D.
&
Colvin
,
V.
(
2001
)
The fabrication and bandgap engineering of photonic multilayers
,
Advanced Materials
13
(
6
),
389
393
.
14.
Wong
,
S.
,
Kitaev
V.
, &
Ozin
,
G.A.
(
2003
)
Colloidal crystal films: advances in universality and perfection
,
Journal of American Chemistry Society
125
,
15589
15598
.
15.
Yablonovitch
,
E.
&
Gmitter
,
T. J.
(
1990
)
Photonic band structure: the face center cubic case
,
Journal of Optical Society of America A
7
(
9
),
1792
1800
.
16.
Blanco
,
A.
,
Chomski
,
E.
,
Grabtchak
,
S.
,
Ibisate
,
M.
,
John
,
S.
,
Leonard
,
S. W.
,
Lopez
,
C.
,
Meseguer
,
F.
,
Migurz
,
H.
,
Mondia
,
J. P.
,
Ozin
,
G. A.
,
Toader
,
O.
&
Driel
,
M. V.
(
2000
)
Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers
,
Nature
405
,
437
440
.
17.
Vlasov
,
Y. A.
,
Bo
,
X. Z.
,
Sturm
,
J. C.
&
Norris
,
D. J.
(
2001
)
On-chip natural assembly of silicon photonic bandgap crystals
,
Nature
414
,
289
293
.
18.
Zakhidov
,
A. A.
,
Baughman
,
R. H.
,
Iqbal
,
Z.
,
Cui
,
C.
,
Khayrullin
,
I.
,
Dantas
,
S. O.
,
Marti
,
J.
&
Ralchenko
,
V. G.
(
1998
)
Carbon structures with three-dimensional periodicity at optical wavelengths
,
Science
282
,
897
900
.
19.
Vlasov
,
Y. A.
,
Yao
,
N.
&
Norris
,
D
, J. (
1999
)
Chemical approaches to three-dimensional semiconductor photonic crystals
,
Advanced Materials
11
(
2
),
371
376
.
20.
Verkhovsky
,
M. I.
,
Jasaitis
,
A.
,
Verkhovskaya
,
M. L.
,
Morgan
,
J. E.
&
Wikström
,
M.
(
1999
)
Proton translocation by cytochromec oxidase
,
Nature
402
,
603
605
.
21.
Holland
,
B. T.
,
Blanford
,
C. F.
&
Stein
,
A.
(
1998
)
Synthesis of macroporous minerals with highly ordered three-dimensional arrays of apheroidal voids
,
Science
281
,
538
541
.
22.
Wijnhoven
,
J. E. G. J.
&
Vos
,
W. L.
(
1998
)
Preparation of photonic crystals made of air spheres in titania
,
Science
281
,
802
804
.
This content is only available via PDF.
You do not currently have access to this content.