For quality assurance in the manufacture of automotive parts, the integrity of the laser-beam welds joining steel parts must be monitored. A primary concern is to detect weld defects fast, reliably and cost-effectively. Therefore, a considerable number of on-line inspection systems have being developed to improve weld quality and reduce overall costs. All the systems, for monitoring the photonic emissions from the weld pool, adopt measurement schemes in which wired sensors output a voltage signal (mV) that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. During the last years, the development of the wireless data transmission technology has prompted monitoring folks to consider alternatives that reduce wiring costs, make connections not feasible previously and retrofit more measurement points cost effectively as well. This paper presents a prototype wireless monitor for laser welding operations that can sense irregularities in the welded seam and weld penetration. The weld monitor is designed to be simple, low cost, and able to withstand a harsh manufacturing environment. The prototype system has been used during the welding of structural parts of car doors to explore the relationships between the weld characteristics and the weld monitor output.

1.
L.
Li
,
D.J.
Brookfield
and
W.M.
Steen
,
Plasma charge sensor for in-process, non-contact monitoring of the laser welding process
,
Meas. Sci. Tech.
Vol.
7
(
4
) (Steen), pp.
615
26
.
2.
H.
Luo
,
H.
Zeng
,
L.
Hu
,
X.
Hu
and
Z.
Zhou
,
Application of artificial neural network in laser welding defect diagnosis
,
Journal of Material Processing Technology
, Vol.
170
(
2005
), pp.
403
11
.
3.
B.
Venkatraman
,
B.
Raj
and
M.
Menaka
,
Online infrared detection of inclusions and lack of penetration during welding
,
Materials Evaluation
, Vol.
63
(
9
) (
2005
), pp.
933
37
.
4.
A.
Ancona
,
V.
Spagnolo
,
P.M.
Lugara
and
M.
Ferrara
,
Optical sensor for real-time monitoring of CO2 laser welding process
,
Applied Optics
, Vol.
40
(
33
) (
2001
), pp.
6019
25
5.
B.
Sung-Hoon
,
K.
Min-Suk
,
P.
Seong-Kyu
,
C.
Chin-Man
,
K.
Cheol-Jung
and
K.
Kwang-Jung
,
Autofocus Control and Weld Process Monitoring of Laser Welding using Chromatic Filtering of Thermal Radiation
,
Meas. Sci. Tech.
, Vol.
11
(
2000
), pp.
1772
77
6.
P. G.
Sanders
,
J. S.
Keske
,
G.
Kornecki
, and
K. H.
Leong
.
Real-time Monitoring of Laser Beam Welding Using Infrared Weld Emissions
.
Technology Development Division Argonne National Laboratory Argonne
,
IL 60439 USA
.
7.
Chen
,
H. B.
,
Li
,
L.
,
Brookfield
,
D. J.
,
Williams
,
K.
, and
Steen
,
W. M.
(
1991
).
Laser process monitoring with dual wavelength sensors
. In:
Proc. ICALEO 91
,
San Jose, CA. Orlando, FL
:
Laser Institute of America
, SPIE 1722, pp.
113
122
.
8.
Bagger
,
C.
,
Miyamoto
,
I.
,
Olsen
,
F.
, and
Maruo
,
H.
(
1991
).
On-line control of the CO2 laser welding process
. In:
Beam Technology Conference Proceedings
,
Karlsruhe, Germany
, March 13-14, DVS-Berichte 135, pp.
1
6
.
9.
Olsen
,
F. O.
,
Jørgensen
,
H.
,
Bagger
,
C.
,
Kristensen
,
T.
, and
Gregersen
,
O.
(
1992
).
Recent investigations in sensorics for adaptive control of laser cutting and welding
. In:
Proc. LAMP2
,
Nagoka, Japan
:
High Temperature Society of Japan
, pp.
405
414
.
10.
Chang
,
D. U.
(
1994
).
Monitoring laser weld quality in real time
.
Indust. Laser Rev.
15-16, November.
11.
Maischner
,
D.
,
Drenker
,
A.
,
Seidel
,
B.
,
Abels
,
P.
, and
Beyer
,
E.
(
1991
).
Process control during laser beam welding
. In:
Proc. ICALEO 91
,
San Jose, CA. Orlando, FL
:
Laser Institute of America
, SPIE 1722, pp.
150
155
.
12.
G.
D’Angelo
,
G.
Pasquettaz
,
A.
Terreno
(
2007
).
Laser process monitoring at FIAT group
. In:
Proc. EALA 07
-
Bad Nauheim/Frankfurt, Germany
,
30/31 January 2007
.
13.
C.
Alippi
,
G.
D’Angelo
,
V.
Piuri
et al (
2003
).
Composite techniques for quality analysis in automotive laser welding
.
CIMSA 2003
Lugano, Switzerland
,
29-31 July 2003
.
14.
G.
D’Angelo
,
G.
Pasquettaz
,
A.
Terreno
(
2006
).
Improving the analysis of laser welding process by the reassigned time-frequency representations
. In:
Proc. ICALEO 06
,
Scottsdale, AZ
.
15.
L.
Talbi
and
G. Y.
Delisle
(
1996
).
Finite difference time domain characterization of indoor radio propagation
.
Progress. Electromagnetic Research
, PIER 12,
251
275
, 1996.
16.
WinProp
:
Software Tool for the Planning of Radio Communication Networks
(
Terrain, Urban
,
Indoor & Tunnel
). Jan.
2000
.
17.
European Commission
:
European cooperation on the field of scientific and technical research (EURO-COST 231): “Digital mobile radio towards future generation systems
”,
Final report
,
Bruxelles
,
1999
.
18.
G.
Wölfle
,
R.
Hoppe
, and
F. M.
Landstorfer
, “
A Fast and Enhanced Ray Optical Propagation Model for Indoor and Urban Scenarios, Based on an Intelligent Pre-processing of the Database
”,
10th IEEE Symposium on Personal, Indoor and Mobile Radio Communications(PIMRC)
,
Osaka
, Sept.
1999
.
19.
H.
Bertoni
,
W.
Honcharenko
,
L. R.
Maciel
, and
H.
Xia
, “
UHF propagation prediction for wireless personal communications
,”
Proc. IEEE
, vol.
82
, pp.
1333
1359
, Sept.
1994
.
20.
Mudhafar
Hassan-Ali
,
Kaveh
Pahlavan
, (
2002
).
A new statistical model for sire-specific indoor radio propagation prediction based on geometric optics and geometric probability
.
IEEE Transaction on Wireless Communication.
Vol.
1
, NO.
1
, January 2002.
21.
Di
Donna
(
2007
) “
Prediction of indoor radio propagation by statistics criteria
”. Department of Quality and diagnostic, Centro Ricerche FIAT,
Orbassano, Italy
.
22.
D.
Gabor
(
1946
) “
Theory of communication
,”
J. Inst. Electron. Eng.
, vol.
93
, no.
11
, pp.
429457
.
23.
T. A. C. M.
Claasen
and
W. F. G.
Mecklenbrauker
,
1980
The Wigner distribution, a tool for time-frequency analysis, Part I: Continuous-time signals
.” vol.
35
. no.
3
. pp.
217
250
:
T. A. C. M.
Claasen
and
W. F. G.
Mecklenbrauker
,
1980
Part 11: Discrete-time signals
,” vol.
35
, no.
4/5
, pp.
276300
;
T. A. C. M.
Claasen
and
W. F. G.
Mecklenbrauker
,
1980
Part 111: Relations with other time-frequency signal transformations
,”
Philips J. Res.
, vol.
35
, no.
6
, pp.
372
389
.
24.
L.
Cohen
(
1989
) “
Time-frequency distributions. A review
,” in
Proc. IEEE
, vol.
77
, pp.
941
981
.
25.
F.
Hlawatsch
and
G. F.
Boudreaux-Bartels
(
1992
) “
Linear and quadratic time-frequency signal representations
,”
IEEE Signal Processing Mag.
, pp.
21
67
.
26.
H. I.
Choi
and
W. J.
Williams
(
1989
) “
Improved time-frequency representation of multicomponent signals using exponential kernels
,”
IEEE Trans. Acoust., Speech, Signal Processing
, vol.
37
, pp.
862
871
.
27.
J.
Jeong
and
W. J.
Williams
(
1992
) “
Kernel design for reduced interference distributions
,”
IEEE Trans. Signal Processing
, vol.
40
, pp.
402
412
.
28.
S.
Qian
and
J. M.
Moms
(
1992
) “
Wigner distribution decomposition and cross-terms deleted representation
,”
Sig. Processing
, vol.
27
, no.
2
, pp.
125
144
.
29.
K.
Kodera
,
C.
de Villedary
, and
R.
Gendrin
(
1976
) “
A new method for the numerical analysis of time-varying signals with small BT values
,”
Phys. Earth Planet. Interiors
, no.
12
, pp.
142
150
.
30.
F.
Auger
,
P.
Flandrin
(
1995
) “
Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method
IEEE Transaction On Signal Processing
, Vol.
43
, no.
5
May.
31.
G.
D’Angelo
,
G.
Pasquettaz
,
A.
Terreno
(
2007
) “
Improving the analysis of laser welding process by advanced signal analysis methodologies
”,
6th International Conference on Intelligent Processing and Manufacturing of Materials Salerno (Italy)
,
June 25-29, 2007
.
This content is only available via PDF.
You do not currently have access to this content.