It is well established that the Marangoni flow dominated circulation within a laser melt pool significantly modifies the pool profile and temperature distribution. Detailed computational fluid dynamics models are required to accurately predict this but these are complicated and computationally expensive. Many researchers have in the past used an enhanced thermal conductivity approach, but the validity of this approach for accurately predicting the melt pool geometry and temperature distribution is largely unproven.

This paper presents an analysis of the widely-used isotropic enhanced thermal conductivity approach and compares it with a more advanced anisotropic approach for modelling the laser melting of Inconel 718. Experimental and modelled results for the geometry of a melt pool created by a moving laser beam are compared. It is found that the conventional enhanced thermal conductivity approach does not change the melt pool size and shape; it only reduces the maximum surface temperature. The anisotropic enhanced thermal conductivity approach on the other hand is able to modify the melt pool size and geometry and yields a better agreement with the experimental results.

1.
Mazumder
,
J.
,
Schifferer
,
A.
&
Choi
,
J.
(
1999
)
Direct materials deposition: designed macro and microstructure
, in
Proceedings of the Material Research Society Fall Meeting - Symposium V
, ‘Solid Freeform and Additive Fabrication’,
Boston MA USA
,
51
63
.
2.
Griffith
,
M.L.
,
Schlienger
,
M.E.
,
Harwell
,
L.D.
,
Oliver
,
M.S.
,
Baldwin
,
M.D.
et al (
1999
)
Understanding thermal behavior in the LENS process
,
Materials and Design
20
(
2-3
),
107
113
.
3.
Henderson
,
M.B.
,
Arrell
,
D.
,
Larsson
,
R.
,
Heobel
,
M.
&
Marchant
,
G.
(
2004
)
Nickel based superalloy welding practices for industrial gas turbine applications
,
Science and Technology of Welding and Joining
9
(
1
),
13
21
.
4.
Wang
,
Z.-K.
,
Ye
,
H.-Q.
,
Xu
,
D.-S.
&
Huang
,
S.-Y.
(
2001
)
Laser repairing surface crack of Ni-based superalloy components
,
Transactions of Nonferrous Metals Society of China
(English Edition)
11
(
4
),
572
575
.
5.
Grum
,
J.
&
Slabe
,
J.M.
(
2003
)
A comparison of tool-repair methods using CO2 laser surfacing and arc surfacing
,
Applied Surface Science
208-209
,
424
431
.
6.
Watkins
,
K.G.
,
McMahon
,
M.A.
&
Steen
,
W.M.
(
1997
)
Microstructure and corrosion properties of laser surface processed aluminium alloys: a review
,
Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing
231
(
1-2
),
55
61
.
7.
Hawkes
,
I.
,
Walker
,
A.
,
Steen
,
W.M.
&
West
,
D.R.F.
(
1985
)
Application of laser surface melting and alloying to alloys
, in
Proceedings of the 113th AIME Annual Meeting, Laser Processing of Materials Symposium
,
Los Angeles CA USA
,
169
182
.
8.
Kochan
,
A.
(
2004
)
Volkswagen makes a success with lasers
,
Assembly Automation
24
(
4
),
357
360
.
9.
Cao
,
X.
,
Wallace
,
W.
,
Poon
,
C.
&
Immarigeon
,
J.P.
(
2003
)
Research and progress in laser welding of wrought aluminum alloys
.
I. Laser welding processes, Materials and Manufacturing Processes
18
(
1
),
1
22
.
10.
Kochan
,
A.
(
2001
)
Laser welding adapts to non-linear tailored blanks
,
Assembly Automation
21
(
1
),
48
50
.
11.
Chan
,
C.
,
Mazumder
,
J.
&
Chen
,
M.M.
(
1985
)
Axis-symmetry model for convection in a laser melted pool
, in
Proceedings of the Laser Processing of Materials Symposium at the 113th AIME Annual Meeting
,
Los Angeles CA USA
,
3
16
.
12.
Mills
,
K.C.
,
Keene
,
B.J.
,
Brooks
,
R.F.
&
Shirali
,
A.
(
1998
)
Marangoni effects in welding
,
Philosophical Transactions of the Royal Society of London A
,
356
,
911
925
.
13.
Eustathopoulos
,
N.
,
Drevet
,
B.
&
Ricci
,
E.
(
1998
)
Temperature coefficient of surface tension for pure liquid metals
,
Journal of Crystal Growth
191
(
1-2
),
268
274
.
14.
Zhao
,
H.
,
White
,
D.R.
&
DebRoy
,
T.
(
1999
)
Current issues and problems in laser welding of automotive aluminium alloys
,
International Materials Reviews
44
(
6
),
238
266
.
15.
Sudnik
,
W.
,
Radaj
,
D.
&
Erofeew
,
W.
(
1996
)
Computerized simulation of laser beam welding, modelling and verification
,
Journal of Physics D-Applied Physics
29
(
11
),
2811
2817
.
16.
Steen
,
W.M.
(
2003
)
Laser Material Processing
,
Springer-Verlag
.
17.
Zhang
,
W.
,
Kim
,
C.H.
&
DebRoy
,
T.
(
2004
)
Heat and fluid flow in complex joints during gas metal arc welding - Part II: Application to fillet welding of mild steel
,
Journal of Applied Physics
95
(
9
),
5220
5229
.
18.
Kim
,
C.H.
,
Zhang
,
W.
&
DebRoy
,
T.
(
2003
)
Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding
,
Journal of Applied Physics
94
(
4
),
2667
2679
.
19.
Lampa
,
C.
,
Kaplan
,
A.F.H.
,
Powell
,
J.
&
Magnusson
,
C.
(
1997
)
Analytical thermodynamic model of laser welding
,
Journal of Physics D: Applied Physics
30
(
9
),
1293
1299
.
20.
Safdar
,
S.
,
Li
,
L.
&
Sheikh
,
M.A.
(
2007
)
Effectiveness of the enhanced thermal conductivity approach to artificially simulate melt pool convection for accurate prediction of melt pool geometry and temperature distribution for aser melting processes
,
Acta Materialia
, Submitted.
21.
Pottlacher
,
G.
,
Hosaeus
,
H.
,
Kaschnitz
,
E.
&
Seifter
,
A.
(
2002
)
Thermophysical properties of solid and liquid Inconel 718 Alloy
,
Scandinavian Journal of Metallurgy
31
,
161
168
.
22.
Safdar
,
S.
,
Li
,
L.
,
Sheikh
,
M.A.
&
Schmidt
,
M.J.
(
2006
)
Thermal history analysis of surface heating of mild steel with different laser beam geometries
,
Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science
220
(
10
),
1549
1557
.
23.
Yeung
,
K.S.
&
Thornton
,
P.H.
(
1999
)
Transient thermal analysis of spot welding electrodes
,
Welding Journal
78
(
1
),
1S
6S
.
24.
Reddy
,
J.N.
&
Gartling
,
D.K.
(
1994
)
The finite element method in heat transfer and fluid dynamics
,
CRC
.
25.
ANSYS Theory Manual
(
2003
),
ANSYS Inc
.
26.
Han
,
L.
&
Liou
,
F.W.
(
2004
)
Numerical investigation of the influence of laser beam mode on melt pool
,
International Journal of Heat and Mass Transfer
47
(
19-20
),
4385
4402
.
27.
Heiple
,
C.R.
&
Roper
,
J.R.
(
1982
)
Mechanism for minor element effect on GTA fusion zone geometry
,
Welding Journal
61
(
4
),
97
102
.
28.
Ravindran
,
K.
,
Srinivasan
,
J.
&
Marathe
,
A.G.
(
1995
)
Finite element solution of surface-tension driven flows in laser surface-melting
,
Mechanics Research Communications
22
(
3
),
297
304
.
This content is only available via PDF.
You do not currently have access to this content.