Fundamental processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length scales tends to unfold within tens to thousands of attoseconds (1 attosecond [as] = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics. The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 femtosecond = 1000 attoseconds). Atoms exposed to a few oscillations cycles of intense laser light are able to emit a single extreme ultraviolet (xuv) burst lasting less than one femtosecond. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles have recently allowed the reproducible generation and measurement of isolated sub-femtosecond xuv pulses, demonstrating the control of microscopic processes (electron motion and photon emission) on an attosecond time scale. These tools have enabled us to visualize the oscillating electric field of visible light with an attosecond “oscilloscope”, to control single-electron and probe multi-electron dynamics in atoms, molecules and solids. Recent experiments hold promise for the development of an attosecond x-ray source, which may pave the way towards 4D electron imaging with sub-atomic resolution in space and time.

1.
Zewail
,
A.
Femtochemistry: atomic-scale dynamics of the chemical bond (adapted from the Nobel Lecture)
.
J. Phys. Chem.
A104
,
5660
5694
(
2000
).
2.
Brabec
,
T.
&
Krausz
,
F.
Intense few-cycle laser fields: frontiers of nonlinear optics
.
Rev. Mod. Phys.
72
,
545
591
(
2000
).
3.
Keller
,
U.
Recent developments in compact ultrafast lasers
.
Nature
424
,
831
838
(
2003
).
4.
Drescher
,
M.
et al,
X-ray pulses approaching the attosecond frontier
.
Science
291
,
1923
1927
(
2001
). Published online February 15, 2001; .
5.
Paul
,
P. M.
et al,
Observation of a train of attosecond pulses from high harmonic generation
.
Science
292
,
1689
1692
(
2001
).
6.
Mairesse
,
Y.
et al,
Attosecond Synchronisation of High-Harmonic Soft X-Rays
.
Science
302
,
1540
1543
(
2003
).
7.
Tzallas
,
P.
et al,
Direct observation of attosecond light bunching
.
Nature
426
,
267
271
(
2003
).
8.
Hentschel
,
M.
et al., Attosecond metrology
.
Nature
414
,
509
513
(
2001
).
9.
Baltuska
,
A.
et al,
Attosecond control of electronic processes by intense light fields
.
Nature
421
,
611
615
(
2003
).
10.
Wheatstone
,
C.
Phil
.
Mag.
6
,
61
(
1835
).
11.
Bradley
,
D. J.
et al,
Opt. Commun.
2
,
391
(
1971
).
12.
Schelev
,
M.
et al,
Image-converter streak camera with picosecond resolution
.
Appl. Phys. Lett.
18
,
354
(
1971
).
13.
Itatani
,
J.
et al,
Attosecond streak camera
.
Phys. Rev. Lett.
88
,
173903
(
2002
).
14.
Kitzler
,
M.
et al,
Quantum theory of attosecond XUV pulse measurement by laser-dressed photoionization
.
Phys. Rev. Lett.
88
,
173904
(
2002
).
15.
Kienberger
R.
et al,
Atomic transient recorder
.
Nature
427
,
817
821
(
2004
).
16.
Christov
,
I. P.
et al,
High-harmonic generation of attosecond pulses in the “single-cycle” regime
.
Phys. Rev. Lett.
78
,
1251
1254
(
1997
).
17.
Kane
,
D. J.
&
Trebino
,
R.
Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating
.
IEEE J. Quantum Electron.
29
,
571
579
(
1993
).
18.
Sekikawa
,
T.S.
et al,
Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating
.
Phys. Rev. Lett.
88
,
193902
(
2002
).
19.
Vampouille
et al,
J. Opt. (Paris)
15
,
385
(
1984
).
20.
M.
Kaufman
et al,
Appl. Phys. Lett.
64
,
270
(
1994
).
22.
Walmsley
I.
, et al,
J. Opt. Soc. Am B
13
,
2453
(
1996
).
24.
Drescher
,
M.
et al,
Time-resolved atomic inner-shell spectroscopy
.
Nature
419
,
803
807
(
2002
).
25.
L’Huillier
,
A.
&
Balcou
,
P.
High-order harmonic generation in rare gases with a 1-ps 1053-nm laser
.
Phys. Rev. Lett.
70
,
774
777
(
1993
).
26.
Macklin
,
J. J.
et al,
High-order harmonic generation using intense femtosecond pulses
.
Phys. Rev. Lett.
70
,
766
769
(
1993
).
27.
Uiberacker
,
M.
et al,
Attosecond real-time observation of electron tunnelling and multi-electron dynamics in atoms
.
Nature
446
,
627
(
2007
).
28.
Keldysh
,
L.V.
Ionization in the field of a strong electromagnetic wave
.
Sov. Phys. JETP
20
,
1307
1314
(
1965
).
29.
Yudin
,
G. L.
and Ivanov,
M.
Yu
.
Nonadiabatic tunnel ionization: looking inside a laser cycle
.
Phys. Rev. A
64
,
013409
(
2001
).
30.
Goulielmakis
,
E.
et al,
Science
305
,
1267
(
2004
).
31.
35.
Haljan
,
P.
et al,
Laser Physics
7
,
1
(
1997
).
37.
Posthumus
,
J. H.
,
Rep. Prog. Phys.
67
,
623
(
2004
).
38.
Eppink
,
A.T.J.B.
,
Parker
,
D. H.
,
Rev. Sci. Instr.
68
,
3477
(
1997
).
39.
Sändig
,
K.
et al,
Phys. Rev. Lett.
85
,
4876
(
2000
).
40.
Alnaser
,
A.S.
et al,
Phys. Rev. Lett.
93
,
183202
(
2004
).
41.
Bandrauk
,
A.D.
et al,
Int. J. Quant. Chem.
100
,
834
(
2004
);
42.
Niikura
,
H.
et al,
Phys. Rev. A
73
,
021402
(
2006
);
43.
Yudin
,
G. L.
et al,
Phys. Rev. A
72
,
051401
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.