Laser shock peening by a micron sized laser beam is a process in which compressive residual stresses are induced in order to improve material fatigue life of micro scale components. The size of the laser target interaction zone is of the same order of magnitude as the target material grains and thus the effects of anisotropic material response must be taken into account. Single crystals are therefore chosen to study such anisotropy. It is also of interest to investigate the response of symmetric and asymmetric slip systems with respect to the yield surface. In presented work, analytic, numerical and experimental investigations of two different orientations, (110) and (11¯4) of aluminum single crystals are studied. Anisotropic slip line theory is employed for the construction of slip line fields for both orientations and compared with numerical results. Theory is further used to explain the difference in plastic deformation for two different orientations. Lattice rotations on the top surface and cross section are also measured using Electron Backscatter Diffraction (EBSD), while residual stress is measured using X-ray microdiffraction. Both the analytical and numerical models are then validated via experimental results.

1.
Asaro
,
R.J.
(
1983
)
Micromechanics of crystals and polycrystals
,
Advances in Applied Mechanics
23
,
1
115
.
2.
Booker
,
J.R.
&
Davis
,
E.H.
, (
1972
)
A general treatment of plastic anisotropy under conditions of plane strain
,
Journal of the Mechanics and Physics of Solids
20
,
239
250
.
3.
Crone
,
W.C.
,
Shield
,
T.W.
,
Creuziger
,
A.
&
Henneman
,
B.
,
2004
)
Orientation dependence of the plastic slip near notches in ductile FCC single crystals
,
Journal of the Mechanics and Physics of Solids
52
,
85
112
.
4.
Cullity
,
B.D.
(
1978
)
Elements of X-ray Diffraction
,
Addison-Weseley
.
5.
Chen
,
H.
,
Yao
,
Y.L.
&
Kysar
,
J.W.
(
2004
)
Spatialy resolved characterization of residual stress induced by micro scale laser shock peening, ASME
,
Transactions Journal of Manufacturing Science and Engineering
126
,
226
235
.
6.
Chen
,
H.
,
Yao
,
Y.L.
&
Kysar
,
J.W.
(
2004
)
Characterization of plastic deformation induced by microscale laser shock peening
,
Journal of Applied Mechanics
71
,
713
723
.
7.
Clauer
,
A.H.
&
Holbrook
,
J.H.
(
1981
) Effects of laser induced shock waves on metals,
Shock waves and high strain phenomena in metals-concepts and applications
,
New York
,
Plenum
,
675
702
.
8.
Clauer
,
A.H.
&
Lahrman
,
D.F.
(
2001
)
Laser Shock processing as a surface enhancement process
,
Key Engineering Materials
197
,
121
142
.
9.
Fabbro
,
R.
,
Fournier
,
J.
10.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
&
Virmont
,
J.
(
1990
)
Physical study of laser-produced plasma in confined geometry
,
Journal of Applied Physics
68
, No.
2
,
775
784
.
11.
Fox
,
J.A.
(
1974
)
Effect of Water and Paint Coatings on Laser-Irradiated Targets
,
Applied Physics Letters
24
,
461
464
.
12.
Hertzberg
,
R.W.
(
1995
)
Deformation and Fracture Mechanics of Engineering
,
John Wiley and Sons
.
13.
Hammersley
,
G.
,
Hackel
,
L.A.
&
Harris
,
F.
(
2000
)
Surface prestressing to improve fatigue strength of components by laser shot peening
,
Optics and Lasers in Engineering
34
,
327
337
.
14.
Hill
,
R.
, (
1950
)
The Mathematical Theory of Plasticity
,
Claredon Press
,
15.
Huang
,
Y.
(
1991
)
A User-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program, Mech. Report, 178
,
Division of Applied Sciences
,
Harvard University
,
Cambridge, MA
.
16.
Katchanov
,
L.M.
(
1971
)
Foundations of The Theory of Plasticity
,
North-Holland
.
17.
Kysar
,
J.
(
1997
) Addendum to a user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program, Mech. Report, 178,
Division of Applied Sciences
,
Harvard University
,
Cambridge, MA
.
18.
Kysar
,
J.W.
&
Briant
,
C.L.
(
2002
)
Crack tip deformation fields in ductile single crystals
,
Acta Materialia
50
,
2367
2380
.
19.
Kysar
,
J.W.
,
Gan
,
Y.X.
&
Mendez-Arzuza
,
G.
(
2005
)
Cylindrical void in a rigid-ideally plastic single crystal. Part I: anisotropic slip line theory solution for face-centered cubic crystals
,
International Journal of Plasticity
21
,
1481
1520
.
20.
Noyan
,
I.C.
&
Cohen
,
J.B.
(
1986
)
Residual Stress
,
Springer-Verlag
New York, Inc
.
21.
Hencky
,
H.
(
1923
)
Über einige statisch bestimmte fälle des gleichgewichts in plastischen körpern
,
Z. Angew. Math. Mech.
3
,
241
251
(German).
22.
Prandtl
,
L.
(
1923
)
Anwendungsbeispiele zu einem henckyschen salt über das plastische gleichgewicht
,
Zeitschr. Angew. Math. Mech.
3
,
401
406
.
23.
Rice
,
J.R.
(
1973
)
Plane strain slip line theory for anisotropic rigid/plastic materials
,
Journal of the Mechanics and Physics of Solids
21
,
63
74
.
24.
Rice
,
J.R.
(
1987
)
Tensile crack tip fields in elastic-ideally plastic crystals
,
Mechanics of Materials
6
,
317
335
.
25.
Ungar
,
T.
,
Mughrabi
,
H.
,
Roennpagel
,
D.
&
Wilkens
,
M.
(
1984
)
X-ray line-broadening study of the dislocation cell structure in deformed [001]-oriented copper single crystals
,
Acta Metallurgica
32
(
3
),
332
342
.
26.
Wang
,
Y.
,
Kysar
,
J.W.
&
Yao
,
Y.L.
(
2005
)
Analytical solution of anisotropic plastic deformation induced by micro-scale laser shock peening
, Submitted.
27.
Zhang
,
W.
&
Yao
,
Y.L.
(
2002
)
Microscale laser shock processing of metallic components
,
Journal of Solar Energy Engineering
, Transactions of the ASME,
124
,
369
378
.
This content is only available via PDF.
You do not currently have access to this content.