Here we report experimental and numerical modeling efforts targeted at autogenous keyhole mode laser welding of a low-carbon steel (A131 grade EH-36). In order to quantitatively understand the heat transfer and fluid flow processes, a mathematical model involving numerical solution of the equations of conservation of heat, mass and momentum in three dimensions was developed. The model considered formation of a keyhole, liquid steel flow in the weld pool driven by Marangoni convection at the weld pool surface, and heat transfer in the entire weldment. The computed results provide a detailed description of the temperature and velocity fields in the weldment, the shape and size of the keyhole, and the geometry of the fusion zone. There is excellent agreement between the experimental and modelled fusion zones.

1.
T.
DebRoy
and
S.A.
David
,
Rev. Mod. Phys.
67
,
85
(
1995
).
2.
3.
D. E.
Swift-Hook
and
A. E. F.
Gick
,
Weld. J. (Miami)
52
,
492s
(
1973
).
4.
J. G.
Andrews
and
D. R.
Atthey
,
J. Phys. D: Appl. Phys.
9
,
2181
(
1976
).
5.
J.
Kroos
,
U.
Gratzke
, and
G.
Simon
,
J. Phys. D: Appl. Phys.
26
,
474
(
1993
).
6.
J.
Mazumder
and
W. M.
Steen
,
J. Appl. Phys.
51
,
941
(
1980
).
7.
E. A.
Metzbower
,
Metall. Trans. B
24
,
875
(
1993
).
8.
A.
Kaplan
,
J. Phys. D: Appl. Phys.
27
,
1805
(
1994
).
9.
H.
Zhao
and
T.
DebRoy
,
J. Appl. Phys.
93
,
10089
(
2003
).
10.
R.
Rai
and
T.
DebRoy
,
J. Phys. D: Appl. Phys.
39
,
1257
(
2006
).
11.
Y.
Arata
,
Plasma, Electron and Laser Beam Technology
(
American Society for Metals
,
Metalsw Park, OH
,
1986
).
12.
S.
Fujinaga
,
H.
Takenaka
,
T.
Narikiyo
,
S
Katayama
, and
A.
Matsunawa
,
J. Phys. D: Appl. Phys.
33
,
492
(
2000
).
13.
J.
Dowden
,
M.
Davis
, and
P.
Kapadia
,
J. Fluid Mech.
126
,
123
(
1983
).
14.
J.
Dowden
,
N.
Postacioglu
,
M.
Davis
, and
P.
Kapadia
,
J. Phys. D: Appl. Phys.
20
,
36
(
1987
).
15.
N.
Postacioglu
,
P.
Kapadia
,
M.
Davis
, and
J.
Dowden
,
J. Phys. D: Appl. Phys.
20
,
340
(
1987
).
16.
P. G.
Klemens
,
J. Appl. Phys.
47
,
2165
(
1976
).
17.
W.
Sudnik
,
D.
Radaj
, and
W.
Erofeew
,
J. Phy. D: Appl. Phys.
29
,
2811
(
1996
).
18.
H.
Ki
,
P. S.
Mohanty
and
J.
Mazumder
,
Metall. and and Mat. Trans. A
33
,
1817
(
2002
).
19.
H.
Ki
,
P. S.
Mohanty
, and
J.
Mazumder
,
Metall. and Mat. Trans. A
33
,
1831
(
2002
).
20.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, (
Wiley
,
New York
,
1960
).
21.
K.
Mundra
,
T.
DebRoy
, and
K.M.
Kelkar
,
Numer. Heat Transfer
Part A
29
,
115
(
1996
).
22.
V. R.
Voller
and
C.
Prakash
,
Int. J. Heat Mass Transfer
30
,
1709
(
1987
).
23.
A. D.
Brent
,
V. R.
Voller
, and
K. J.
Reid
,
Numer. Heat Transfer
13
,
297
(
1988
).
24.
A.
Kumar
and
T.
DebRoy
,
J. Appl. Phys.
94
,
1267
(
2003
).
25.
W.
Zhang
,
C. H.
Kim
, and
T.
DebRoy
,
J. Appl. Phys.
95
,
5210
(
2004
).
26.
S.
Kou
and
D. K.
Sun
,
Metall. Trans. A
16A
,
203
(
1985
).
27.
S. V.
Patankar
,
Numerical Heat Transfer and Fluid Flow
(
Hemisphere Publishing Corporation
,
New York
,
1980
).
28.
C. H.
Kim
,
W.
Zhang
, and
T.
DebRoy
,
J. Appl. Phys.
94
,
2667
(
2003
).
29.
X.
He
,
J.
Elmer
, and
T.
DebRoy
,
J. Appl. Phys.
97
,
84909
(
2005
).
30.
X.
He
,
P.
Fuerschbach
, and
T.
DebRoy
,
J. Appl. Phys.
96
,
4547
(
2004
).
31.
X.
He
,
P.
Fuerschbach
, and
T.
DebRoy
,
J. Phys. D: Appl. Phys.
36
,
3079
(
2003
).
32.
X.
He
,
P.
Fuerschbach
, and
T.
DebRoy
,
J. Phys. D: Appl. Phys.
36
,
1388
(
2003
).
33.
X.
He
,
P.
Fuerschbach
, and
T.
DebRoy
J. Appl. and Phys.
94
,
6949
(
2003
).
34.
W.
Pitscheneder
,
T.
DebRoy
,
K.
Mundra
, and
R.
Ebner
,
Weld. J. (Miami)
75
,
71
s (
1996
).
35.
H.
Zhao
and
T.
DebRoy
,
Metall. Trans. B
32B
,
163
(
2001
).
36.
B. E.
Launder
and
D. B.
Spalding
,
Lectures in Mathematical Models of Turbulence
(
London
:
Academic Press
,
1972
).
37.
D.
Rosenthal
,
Trans. ASME
48
,
848
(
1946
).
38.
M. M.
Collur
,
A.
Paul
, and
T.
DebRoy
,
Metall. Trans. B
18
,
733
(
1987
).
39.
P.
Sahoo
,
M. M.
Collur
, and
T.
DebRoy
,
Metall. Trans. B
19
,
967
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.