On line quality monitoring, in industrial plants, is an open field for signal processing application. In this paper we explore the method of reassignment for extracting information from signals detected during the laser welding process. The reassignment method was first applied to the spectrogram by Kodera, Gendrin and de Villedary [22, 23] and later generalized to any bilinear time-frequency representation by Auger and Flandrin [24]. Key to the method is a nonlinear convolution where the value of the convolution is not placed at the center of the convolution kernel but rather reassigned to the center of mass of the function within the kernel. The resulting reassigned representation yields significantly improved components localization. We briefly recall the fundamental concepts of the theory of time-frequency representations, discussing some time-frequency distributions, after that we review the reassignment method. Finally we compare the proposed time-frequency distributions by analyzing signals detected during the laser welding of tailored blanks, demonstrating the advantages of the reassigned representation, giving practical applicability to the proposed method.

1.
D.
Gabor
(
1946
) “
Theory of communication
,”
J. Inst. Electron. Eng.
, vol.
93
, no.
11
, pp.
429457
,.
2.
J. B.
Allen
and
L. R.
Rabiner
(
1977
) “
A unified approach to short-time Fourier analysis and synthesis
,” in
Proc. IEEE
, vol.
65
, pp.
1558
1566
.
3.
L.
Cohen
(
1966
) “
Generalized phase space distribution functions
,”
J. Math Phys
, vol.
7
, no.
5
, pp.
781
786
.
4.
B.
Escudié
and
J.
Gréa
(
1976
) “
Sur une formulation générale de la représentation en temps et en fréquence dans I’ analyse des signaux d’énergie finie
.”
c‘. K. Acad. Sci.
vol.
283
, pp.
1049
1051
. (in French).
5.
E. P.
Wigner
(
1932
) “
On the quantum correction for thermodynamic equilibrium
Phys. Rev.
vol.
40
. pp.
749
759
.
6.
J.
Ville
(
1948
) “
Théorie et applications de la notion de signal analytique
.“
Câbles et Transmissions.
vol.
2A
. pp.
66
74
. (in French).
7.
T. A. C. M.
Claasen
and
W. F. G.
Mecklenbrauker
,
1980
The Wigner distribution, a tool for time-frequency analysis, Part I: Continuous-time signals
.” vol.
35
. no.
3
. pp.
217
250
T. A. C. M.
Claasen
and
W. F. G.
Mecklenbrauker
,
1980
: “Part 11:
Discrete-time signals
,” vol.
35
, no.
4/5
, pp.
276300
;
T. A. C. M.
Claasen
and
W. F. G.
Mecklenbrauker
,
1980
Part 111: Relations with other time-frequency signal transformations
,”
Philips J. Res.
, vol.
35
, no.
6
, pp.
372
389
.
8.
L.
Cohen
(
1989
) “
Time-frequency distributions. A review
,” in
Proc. IEEE
, vol.
77
, pp.
941
981
.
9.
F.
Hlawatsch
and
G. F.
Boudreaux-Bartels
(
1992
) “
Linear and quadratic time-frequency signal representations
,”
IEEE Signal Processing Mag.
, pp.
21
67
.
10.
H. I.
Choi
and
W. J.
Williams
(
1989
) “
Improved time-frequency representation of multicomponent signals using exponential kernels
,”
IEEE Trans. Acoust., Speech, Signal Processing
, vol.
37
, pp.
862
871
.
11.
P.
Flandrin
and
W.
Martin
(
1984
). “A general class of estimators for the Wigner-Ville spectrum of nonstationary processes” in
Systems Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences.
Berlin, Vienna
,
New York Springer-Verlag
, pp.
15
23
.
12.
M.
Born
and
P.
Jordan
(
1925
) “
Zur Quantenmechanik
,”
Z. Phys.
, vol.
34
, pp.
858
888
.
13.
A.
Papandreou
and
G. F.
Boudreaux-Bartels
(
1992
) “
Distributions for time-frequency analysis: A generalization of Choi-Williams and the Buttervorth distributions
,” in
Proc. IEEE ICASSP
, vol.
5
, pp.
181
184
.
14.
J.
Jeong
and
W. J.
Williams
(
1992
) “
Kernel design for reduced interference distributions
,”
IEEE Trans. Signal Processing
, vol.
40
, pp.
402
412
.
15.
S.
Qian
and
J. M.
Moms
(
1992
) “
Wigner distribution decomposition and cross-terms deleted representation
,”
Sig. Processing
, vol.
27
, no.
2
, pp.
125
144
.
16.
S.
Mallat
and
S.
Zhang
(
1992
) “
Adaptive time-frequency decomposition with matching pursuits
,” in
Proc. IEEE Sig. Processing Int. Symp. Time-Frequency and Time-Scale Anal.
, pp.
7
10
.
17.
P.
Duvaut
and
C.
Jorand
(
1991
) “
Analyse en composantes independantes d’un noyau multilinéaire. Application a une nouvelle représentation temps-fr6quence de signaux non Gaussiens
,”
13
1e Colloque GRETSI, pp.
61
64
(in French).
18.
M.
Sun
,
C. C.
Li
,
L. N.
Sekhar
, and
R. J.
Sclabassi
(
1989
) “
Elimination of the cross-components of the discrete pseudo Wigner-Ville distribution via image processing
,” in
Proc. IEEE ICASSP
, pp.
2230
2233
.
19.
H.
Oung
and
J. M.
Reid
(
1990
) “
The Analysis of non-stationary Doppler spectrum using a modified Wigner-Ville distribution
,”
Int. Con$ IEEE EMBS
, vol.
12
, no.
1
, pp.
460
461
.
20.
F.
Auger
and
C.
Doncarli
(
1989
) “
Un algorithme d’élimination des termes d’interférence de la transformée de Wigner-Ville
,”
Colloque Gretsi
89
, pp.
99
102
, (in French).
21.
F.
Auger
(
1991
) “
Représentations temps-fréquence des signaux non-stationnaires: Synthèse et contributions
,” thèse de doctorat,
Ecole Centrale de Nantes
, (in French).
22.
K.
Kodera
,
C.
de Villedary
, and
R.
Gendrin
(
1976
) “
A new method for the numerical analysis of time-varying signals with small BT values
,”
Phys.Earth Planet. Interiors
, no.
12
, pp.
142
150
.
23.
K.
Kodera
,
R.
Gendrin
, and
C.
de Villedary
(
1986
) “
Analysis of time-varying signals with small BT values
,”
IEEE Trans. Acoust., Speech, SignalProcessing
, vol. ASSP-
34
, pp.
6476
.
24.
F.
Auger
,
P.
Flandrin
(
1995
) “
Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method
IEEE Transaction On Signal Processing
, vol.
43
, no.
5
May.
This content is only available via PDF.
You do not currently have access to this content.