This paper presents a 3D transient finite element (FE) model of laser solid freeform fabrication (LSFF) process. The proposed model determines the thermal distribution throughout the workpiece as a function of time and process parameters including laser power, traverse speed, and material properties. Based on the thermal analysis, the clad formation is then predicted. In the proposed method, the thermal domain is numerically obtained, assuming the interaction between the laser beam and powder stream is to be decoupled. Once the melt pool boundary is obtained, the physical domain is discretized in a cross-sectional direction. Based on the powder feed rate, elapsed time, and intersection of the melt pool and powder stream area, layers of additive material are then added onto the non-planar domain. In the numerical simulation, the effects of a non-planar surface on the process parameters such as powder efficiency and absorption factor are taken into account. The model was used to predict the geometrical and thermal properties of a four-layer thin wall of AISI 4340 steel. Numerical results show that the temperatures increase sensibly at the end-segments of layers 2, 3, and 4. Experimental and numerical results are compared to verify the accuracy and reliability of the proposed model.

1.
Hu
,
D.
,
Mei
,
H.
&
Kovacevic
.,
D.
(
2002
)
Improving solid freeform fabrication by laser based additive manufacturing
,
Proceedings of the institution of mechanical engineers-Part B-Engineering Manufacture
216
(
9
),
1253
1264
.
2.
Paul
,
C.P.
,
Jain
,
A.
,
Ganesh
,
P.
,
Negi
,
J.
&
Nath
,
A.K.
(
2006
)
Laser Rapid Manufacturing of Colmonoy-6 Components
,
Journal of Optics & Laser in Engineering
44
,
1096
1109
.
3.
Dubourg
,
L.
,
Ursescu
,
D.
,
Hlawka
,
F.
&
Cornel
,
A.
(
2005
)
Laser cladding of MMC coatings on aluminum substrate: influence of composition and microstructure on mechanical properties
,
Wear
258
(
11-12
),
1745
1754
.
4.
Zhong
,
M.
,
Liu
,
W.
,
Ning
,
G.
,
Yang
,
L.
&
Chen
Y.
(
2004
)
Laser direct manufacturing of tungsten nickel collimation component
,
Journal of Materials Processing Technology
147
(
2
),
167
173
.
5.
Kim
,
J. D.
,
Kang
,
K.H.
&
Kim
,
J. N.
(
2004
)
Nd:YAG laser cladding of marine propeller with hastelloy C-22
,
Applied physics A, Material Science & Processing
79
(
4-6
),
1583
1585
.
6.
Hu
,
D.
&
Kovacevic
,
R.
(
2003
)
Sensing, modeling and control for laser-based additive manufacturing
,
International Journal of Machine Tool & Manufacture
43
(
1
),
51
60
.
7.
Y.
Fu
, Y.,
Loredo
,
A.
,
Martin
,
B.
&
Vannes
,
A. B.
(
2002
)
A theoretical model for laser and powder particles interaction during laser cladding
,
Journal of Material Technology
128
(
1-3
),
106
112
.
8.
D.
Hu
,
R.
Kovacevic
, R. (
2003
)
Modeling and measuring the thermal behavior of the molten pool in closed-loop controlled laser-based additive manufacturing
,
Journal of Engineering Manufacture
212
Part B,
441
452
.
9.
Huang
,
Y. L.
,
Liang
,
G.
Y.
Su
,., J. Y. &
Li
,
J. G.
(
2005
)
Interaction between laser beam and powder stream in the process of laser cladding with powder feeding
,
Modeling and Simulation in Material Science and Engineering
13
(
1
),
47
56
.
10.
Toyserkani
,
E.
,
Khajepour
,
A.
&
Corbin
,
S. F.
(
2004
)
3-D finite element modeling of laser cladding by powder deposition: Effects of laser pulse shaping on the process
,
Journal of Optics and Lasers in Engineering
4
(
6
),
849
867
.
11.
Adak
,
B.
,
Nash
,
P.
&
Chen
,
D.
(
2005
)
Microstructural characterization of laser cladding of Cu-30Ni
,
Journal of Material Science
40
(
8
),
2051
2054
.
12.
Niederhauser
,
S.
&
Karlsson
,
B.
(
2003
)
Mechanical properties of laser cladded steel
,
Journal of Material Science and Technology
19
(
11
),
1611
1616
.
13.
Pinkerton
,
A. J.
&
Li
,
L.
(
2004
)
Modeling the geometry of a moving laser melt pool and deposition track via energy and mass balances
,
Journal of Physics D: Applied Physics
37
,
1885
1895
.
14.
Han
,
L.
,
Liou
,
F. W.
&
Phatak
,
K. M.
(
2004
)
Modeling of laser cladding with powder injection
,
Metallurgical and Material Transactions B
35
(
6
),
1139
1150
.
15.
Picasso
,
M.
,
Marsden
,
C.F.
,
Wagniere
,
J. D.
,
Frend
,
A.
&
Rappaz
,
M.
(
1994
)
A simple but realistic model for laser cladding
,
Metallurgical and Material Transactions B
25B
(
2
),
281
291
.
16.
Pinkerton
,
A. J.
&
Li
,
L.
(
2003
)
The effect of laser pulse width on multiple-layer 316L steel clad microstructure and surface finish
,
Journal of Applied Surface Science
208-209
,
411
416
.
17.
Pinkerton
,
A. J.
&
Li
,
L.
(
2003
)
An investigation of the effect of pulse frequency in laser multiple-layer cladding of stain less steel
,”
Journal of Applied Surface Science
208-209
,
405
410
.
18.
Pinkerton
,
A. J.
&
Li
,
L.
(
2004
)
Multiple-layer cladding of stainless steel using a high-powered diode laser: an experimental investigation of the process characteristics and material properties
,
Thin Solid Films
453-454,
471
476
.
19.
Liu
,
J.
&
L.
Li
, L. (
2005
)
Effect of powder concentration distribution on fabrication of thin-wall parts in coaxial laser cladding
,
Journal of Optics & Laser Technology
37
(
4
),
287
292
.
20.
Vasinonta
,
A.
,
Beuth
,
J. L.
&
Grifith
,
M. L.
(
2001
)
A process map for consistent build condition in the solid freeform fabrication of thin-walled structures
,
Journal of Manufacturing Science and Engineering
123
(
4
),
615
622
.
21.
White
,
F. M.
(
1984
)
Heat Transfer
,
Addison-Wesley Publishing Company
,
588
pp.
22.
Vasinonta
,
A.
,
Beuth
,
J. L.
&
Grifith
,
M. L.
(
2001
)
A process map for consistent build condition in the solid freeform fabrication of thin-walled structures
,
Journal of Manufacturing Science and Engineering
123
(
4
),
615
622
.
23.
Cline
,
H.E.
&
Anthony
,
T.R.
(
1977
)
Heat treating and melting material with a scanning laser or electron beam
,
Journal of Applied Physics
48
(
9
),
3895
3900
.
24.
Brown
,
S.
&
Song
,
H.
(
1992
)
Finite element simulation of welding of large structures
.
Trans. ASME, J. Eng. for Industry
114
(
4
),
441
451
.
25.
Lampa
,
C.
,
Kaplan
,
A.F.H.
,
Powell
,
J.
&
Magnusson
,
C.
(
1997
)
Analytical thermodynamic model of laser welding
,
Journal of Physics D: Applied Physics
30
(
9
),
1293
1299
.
This content is only available via PDF.
You do not currently have access to this content.