Nanosecond and femtosecond near IR laser direct write is a useful tool for fabricating 3D, multiple-level microfluidic structures. Using a diode-pumped nanosecond fundamental Nd:YAG laser, multi-depth, multi-width microstructures on silicon were fabricated without lithography-based technology. The molten material inside the microchannel was ejected by a modified assist gas and thus the amount of laser ablation was increased. The solidified molten material and the debris build-up due to the strong thermal reaction of silicon to the nanosecond IR laser pulse was cleaned up with chemical wet etching in HF and HNO3 solution. Micromachining experiments were also done using a femtosecond fiber laser. Microchannels ranging from 2-20¼m could be fabricated using the femtosecond laser. The usefulness of laser micromachining was demonstrated by realizing a semicircular cross-sectional microchannel, which is difficult to accomplish with the lithography-based technology. Rapid prototyping of an artificial vascular network having variable depth and width was carried out and a fluid flow in the PDMS replica of the network was visualized.

1.
Lim
,
D.
,
Kamotani
,
Y.
,
Cho
,
B.
,
Mazumder
,
J.
&
Takayama
,
S.
(
2003
)
Fabrication of microfluidic mixer and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method
,
Lab Chip
3
,
318
323
2.
Dauer
,
S.
,
Ehlert
,
A.
&
Büttgenbach
,
S.
(
1999
)
Rapid prototyping of micromechanical devices using a Q-switched Nd:YAG laser with optional frequency doubling
,
Sensors and Actuators
76
,
381
385
.
3.
Rizvi
,
N.H.
(
2003
)
Femtosecond laser micromachining: Current status and applications
,
RIKEN Review
50
,
107
112
.
4.
Hwang
,
D.J.
,
Choi
,
T.Y.
&
Grigoropoulos
,
C.P.
(
2004
)
Liquid-assisted femtosecond laser drilling of straight and three-dimentional microchannels in glass
,
Appl. Phys. A
79
,
605
612
.
5.
Sugioka
,
K.
,
Masuda
,
M.
,
Hongo
,
T.
,
Cheng
,
Y.
,
Shihoyama
,
K.
&
Midorikawa
,
K.
(
2004
)
Three-dimensional microfluidic structure embedded in photostructurable glass by femtosecond laser for lab-on-chip applications
,
Appl. Phys. A
79
,
815
817
.
6.
Giridhar
,
M.S.
,
Seong
,
K.
,
Schülzgen
,
A.
,
Khulbe
,
P.
,
Peyghambarian
,
N.
, &
Mansuripur
,
M.
(
2004
)
Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices
,
Appli. Optics
43
,
4584
4589
.
7.
Ho
,
H.
,
Aitchison
,
J.S.
,
Eaton
,
S.
,
Herman
,
P.R.
&
Li
,
J.
(
2004
)
F2-laser microfabrication for integration optical circuits with microfluidic biochips
, in
Proceedings of SPIE: Lab-on-a-Chip
,
Bellingham, Washington, USA
,
96
103
8.
Klank
,
H.
,
Kutter
,
J.P.
&
Geschke
,
O.
(
2002
)
CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems
,
Lab Chip
2
,
242
246
.
9.
Amer
,
M.S.
,
El-Sshry
,
M.A.
,
Dosser
,
L.R.
Hix
,
K.E.
,
Maguire
,
J.F.
&
Irwin
B.
(
2005
)
Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers
,
Applied Surface Science
242
,
162
167
.
10.
Karnakis
,
D.M.
,
Rutterford
,
G.
&
Knowles
,
M.R.H
(
2005
)
High power DPSS laser micromachining of silicon and stainless steel
, in
Proceedings of ICALEO
,
Miami, USA
11.
Zeng
,
X.
,
Mao
,
X.
,
Greif
,
R.
&
Russo
,
R.E.
(
2005
)
Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon
,
Appl. Phys. A
80
,
237
241
.
12.
Müllenborn
,
M.
,
Dirac
,
H.
,
Retersen
,
J.W.
&
Bouwstra
,
S.
(
1995
)
Fast 3D laser micromachining of silicon for micromechanical and microfluidic applications
, in
proceedings of Transducers’95 •Eurosensors
,
Stockholm, Sweden
,
166
169
.
13.
Wang
,
G.J.
,
Chen
,
C.L.
,
Hsu
,
S.H.
&.
Chiang
,
Y.L
(
2005
)
Bio-MEMS fabricated artificial capillaries for tissue engineering
,
Microsyst Technol
12
,
120
127
.
14.
Fidkowski
,
C.
,
Kaazempur-Mofrad
,
M.R.
,
Borenstein
,
J.
,
Vacanti
,
J.P.
,
Langer
,
R.
&
Wang
,
Y.
(
2005
)
Endothelialized Microvasculature Based on a Biodegradable Elastomer
,
Tissue Engineering
11
, #
1/2
,
302
309
.
15.
Mcdonald
,
J.C.
&
Whitesides
,
G.M.
(
2002
)
Poly(dimethylsiloxane) as a Material for fabricating Microfluidic Devices
,
Accounts of Chemical Research
35
,
491
499
,
This content is only available via PDF.
You do not currently have access to this content.