Dispersed nickel sulphate (NiSO4) micro-clusters on Si substrates were disintegrated by pulsed excimer laser irradiation. At proper fluences, the NiSO4 clusters were pulverized into nanoparticles. The size ranges and distributions of fragments and/or particles were found to be dependent on excimer laser fluence and laser pulse number. Both CO2 laser chemical vapor deposition (LCVD) and hot-filament chemical vapor deposition (HFCVD) were used for catalytic growth of carbon nanofibers (CNFs)/carbon nanotubes (CNTs) using excimer laser irradiated NiSO4 catalysts. For catalysts prepared using excimer laser irradiation at fluences of 100 and 200 mJ/cm2, CNFs were dominant products. These CNFs were grown radially out of large NiSO4 clusters, forming dendritic CNFs bunches. For catalysts prepared using excimer laser irradiation at 300 mJ/cm2, multi-walled CNTs with highly-uniform diameters were obtained. Catalysts preparation with excimer laser disintegration of dispersed NiSO4 compound is a simple, ultrafast and in-air process.

1.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
and
Avouris
,
P.
(
2001
)
Carbon Nanotubes: Synthesis, Structure, Properties and Applications
(
Springer
,
Berlin
).
2.
de Heer
,
W. A.
,
Châtelain
,
A.
and
Ugarte
,
D.
(
1995
)
A carbon nanotube field-emission electron source
,
Science
270
,
1179
.
3.
Wang
,
Q. H.
,
Corrigan
,
T. D.
,
Dai
,
J. Y.
,
Chang
,
R. P. H.
and
Krauss
,
A. R.
(
1997
)
Field emission from nanotube bundle emitters at low fields
,
Appl. Phys. Lett.
70
,
3308
.
4.
Zhou
,
Y.
,
Gaur
,
A.
,
Hur
,
S.-H.
,
Kocabas
,
C.
,
Meitl
,
M. A.
,
Shim
,
M.
and
Rogers
,
J. A.
(
2004
)
p-Channel, n-Channel Thin Film Transistors and p− n Diodes Based on Single Wall Carbon Nanotube Network
,
Nano Lett.
4
,
2031
.
5.
Seidel
,
R.
,
Graham
,
A. P.
,
Unger
,
E.
,
Duesberg
,
G. S.
,
Liebau
,
M.
,
Steinhoegl
,
W.
,
Kreupl
,
F.
and
Hoenlein
,
W.
(
2004
)
High-current nanotube transistors
,
Nano Lett.
4
,
831
.
6.
Chopra
,
S.
,
Pham
,
A.
,
Gaillard
,
J.
,
Parker
,
A.
and
Rao
,
A. M.
(
2002
)
Carbon-nanotube-based resonant-circuit sensor for ammonia
,
Appl. Phys. Lett.
24
,
4632
.
7.
Thess
,
A.
,
Lee
,
R.
,
Nikolaev
,
P.
,
Dai
,
H. J.
,
Petit
,
P.
,
Robertand
,
J.
,
Xu
,
C. H.
,
Lee
,
Y. H.
,
Kim
,
S. G.
,
Rin-zler
,
A. G.
,
Colbert
,
D. T.
,
Scuseria
,
G. E.
,
Tomanek
,
D.
,
Fischer
,
J. E.
, and
Smalley
,
R. E.
(
1996
)
Crystalline ropes of metallic carbon nanotubes
,
Science
273
,
5274
.
8.
Ebbesen
,
T. W.
and
Ajaya
,
P. M.
(
1992
)
Large-scale synthesis of carbon nanotubes
,
Nature (London)
358
,
220
.
9.
Kong
,
J.
,
Cassell
,
A. M.
and
Dai
,
H.
(
1998
)
Chemical vapor deposition of methane for single-walled carbon nanotubes
,
Chem. Phys. Lett.
292
,
567
.
10.
Ren
,
Z. F.
,
Huang
,
Z. P.
,
Xu
,
J. W.
,
Wang
,
J. H.
,
Bush
,
P.
,
Siegal
,
P.
and
Provencio
,
P. N.
(
1998
)
Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass
,
Science
282
,
1105
.
11.
Tzeng
,
Y.
,
Liu
,
C.
,
Chen
,
Z.
(
2000
)
Electron Emission From Microwave-Plasma Chemically Vapor Deposited Carbon Nanotubes
,
Mater. Res. Soc. Proc.
621
,
R751
.
12.
Rohmund
,
F.
,
Morjan
,
R.-E.
,
Ledoux
,
G.
,
Huisken
,
F.
and
Alexandrescu
,
R.
(
2002
)
Carbon nanotube films grown by laser-assisted chemical vapor deposition
,
J. Vac. Sci. Technol. B
20
,
802
.
13.
Sohn
,
J. I.
,
Choi
,
C. J.
,
Lee
,
S.
and
Seong
,
T. Y.
(
2001
)
Growth behavior of carbon nanotubes on Fe-deposited (001) Si substrates
,
Appl. Phys. Lett.
78
,
3130
.
14.
Choi
,
G. S.
,
Cho
,
Y. S.
,
Hong
,
S. Y.
,
Park
,
J. B.
,
Son
,
K. H.
and
Kim
,
D. J.
(
2002
)
Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition
,
J. Appl. Phys.
91
,
3847
.
15.
Chhowalla
,
M.
,
Teo
,
K. B. K.
,
Ducati
,
C.
,
Rupesinghe
,
N. L.
,
Amaratunga
,
G. A. J.
,
Ferrari
,
A. C.
,
Roy
,
D.
,
Robertson
,
J.
and
Milne
,
W. I. M.
(
2001
)
Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition
,
J. Appl. Phys.
90
,
5308
.
16.
Carey
,
J. D.
,
Ong
,
L. L.
and
Silva
,
S. R. P.
(
2003
)
Formation of low-temperature self-organized nanoscale nickel metal islands
,
Nanotechnology
14
,
1223
.
17.
Cassell
,
M.
,
Verma
,
S.
,
Delzeit
,
L.
,
Meyyappan
,
M.
,
Han
,
J.
(
2001
)
Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes
,
Langmuir
17
,
260
.
18.
Gao
,
J. S.
,
Umeda
,
K.
,
Uchino
,
K.
,
Nakashima
,
H.
and
Muraoka
,
K.
(
2004
)
Plasma breaking of thin films into nano-sized catalysts for carbon nanotube synthesis
,
Mat. Sci. Eng. B
107
,
113
.
19.
Grobert
,
N.
,
Terrones
,
M.
,
Trasobares
,
S.
,
Kordatos
,
K.
,
Terrones
,
H.
,
Olivares
,
J.
,
Zhang
,
J. P.
,
Redlich
,
Ph.
,
Hsu Al
,
W. K.
,
Reeves
,
C. L.
,
Wallis
,
D. J.
,
Zhu
,
Y. Q.
,
Hare
,
J. P.
,
Pidduck
,
A. J.
,
Kroto
,
H. W.
and
Walton
,
D. R. M.
(
1997
)
A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates
,
Appl. Phys. A.
70
,
175
.
20.
Henley
,
S. J.
,
Poa
,
C. H. P.
,
Adikaari
,
A. A. D. T.
,
Giusca
,
C. E.
,
Carey
,
J. D.
and
Silva
,
S. R. P.
(
2004
)
Excimer laser nanostructuring of nickel thin films for the catalytic growth of carbon nanotubes
,
Appl. Phys. Lett.
,
84
,
4035
.
21.
Bosbach
,
J.
,
Martin
,
D.
,
Stietz
,
F.
,
Wenzel
,
T.
and
Traeger
,
F.
(
1999
)
Laser-based method for fabricating monodisperse metallic nanoparticles
,
Appl. Phys. Lett.
74
,
2605
.
22.
Yang
,
D. Q.
,
Meunier
,
M.
, and
Sacher
,
E. J.
(
2004
)
Excimer laser manipulation and pattering of gold nanoparticles on the SiO2/Si surface
,
Appl. Phys.
95
,
5023
.
23.
Kawasaki
,
M.
and
Hori
,
M.
(
2003
)
Laser-Induced Conversion of Noble Metal-Island Films to Dense Monolayers of Spherical Nanoparticles
,
J. Phys. Chem. B
107
,
6760
.
24.
Lee
,
K. B.
and
Lin
,
L. W.
(
2004
)
Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications
,
Sensor Actuat. A
111
,
44
.
25.
Rasband
,
W.
Image J1.33u
”, http://rsb.info.nih.gov/ij
26.
Lu
,
Y. F.
,
Takai
,
M.
,
Nakata
,
T.
,
Nagatomo
,
S.
and
Namba
,
S.
(
1991
)
Laser-induced deposition of Nilines on ferrite in NiSO4 aqueous solution
,
Appl. Phys. A
52
,
192
.
27.
Micheels
,
R. H.
,
Darrow
,
A. D.
, II
, and
Rauh
,
R. D.
(
1981
)
Photoelectrochemical deposition of microscopic metal film patterns on Si and GaAs
,
Appl. Phys. Lett.
39
,
418
.
28.
Nánai
,
L.
,
Hevesi
,
I.
,
Bunkin
,
F. V.
,
Luk’yanchuk
,
B. S.
,
Brook
,
M. R.
,
Shafeev
,
G. A.
,
Jelski
,
D. A.
,
Wu
,
Z. C.
and
George
,
T. F.
(
1989
)
Laser-induced metal deposition on semiconductors from liquid electrolytes
,
Appl. Phys. Lett.
54
,
736
.
29.
Karlicek
,
R. F.
,
Donnelly
,
V. M.
and
Collins
,
G. J.
(
1982
)
Laser-induced metal deposition on InP
,
J. Appl. Phys.
53
,
1084
.
30.
Tamaki
,
Y.
,
Asahi
,
T.
and
Masuhara
,
H.
(
2002
)
Nanoparticle formation of vanadyl phthalocyanine by laser ablation of its crystalline powder in a poor solvent
,
J. Phys. Chem. B
106
,
2135
.
31.
Masubuchi
,
T.
,
Tada
,
T.
,
Nomura
,
E.
,
Hatanaka
,
K.
,
Fukumura
,
H.
and
Masuhara
,
H.
(
2002
)
Laser-induced decomposition and ablation dynamics studied by nanosecond interferometry: 4. A polyimide film
,
J. Phys. Chem. B
106
,
2180
.
32.
Zhuang
,
X. X.
,
Su
,
G. B.
,
Wang
,
G. F.
Li
,
G. H.
and
Huang
,
Z. X.
(
2004
)
Structure, growth and optical properties of Zn0.24Ni 0.76(SO4)·7H2O single crystal
,
Cryst. Res. Technol.
39
,
754
.
33.
SLIM
is a copyrighted program developed by
>Rajiv K.
Singh
and
J.
Viatella
at
Materials Science and Engineering
Department at the University of Florida
.
34.
Zheng
,
Y. W.
(
2002
),
Laser assisted removal of microparticles from solid substrates
, PhD dissertation,
National University of Singapore
.
35.
Melechko
,
V.
,
Merkulov
,
V. I.
,
Mcknight
,
T. E.
,
Guillorn
,
M. A.
,
Klein
,
K. L.
,
Lowndes
,
D. H.
and
Simpson
,
M. L.
(
2005
)
Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly
,
J. Appl. Phys.
97
,
041301
.
36.
Kanzow
,
H.
and
Ding
,
A.
(
1999
)
Formation mechanism of single-wall carbon nanotubes on liquid-metal particles
,
Phys. Rev. B
60
,
11180
.
37.
Rodriguez
,
N. M.
(
1993
)
A review of catalytically grown carbon nanofibers
,
J. Mater. Res.
8
,
3233
.
38.
Bacon
,
R.
(
1960
)
Growth, Structure, and Properties of Graphite Whiskers
,
J. Appl. Phys.
31
,
283
.
39.
Helveg
,
S.
,
Lopez-Cartes
,
C.
,
Sehested
,
J.
,
Hansen
,
P. L.
,
Clausen
,
B. S.
,
Rostrup-Nielsen
,
J. R.
(
2004
)
Atomic-scale imaging of carbon nanofibre growth, (London)
427
,
426
.
This content is only available via PDF.
You do not currently have access to this content.