The characteristics of copper oxides removal are comparably investigated under different pulsing strategies. A two-dimensional model is utilized to numerically simulate the laser ablative cleaning process. In the model, property discontinuity and Stephan and kinetic boundary condition are taken into account, and the moving phase-interface in the material is evaluated with the enthalpy method. Experiments are carried out on copper samples having different oxide layer thickness. The copper oxide layer thickness determined by ellipsometer, and the chemical constituents of the copper oxide layer determined via X-ray photoelectron spectroscopy (XPS), are incorporated into this numerical model. Under the single-pulse irradiation strategy, a higher laser intensity threshold is determined by the model based on the criterion of removing the oxide film as much as possible without damaging the substrate. Under the multi-pulse irradiation strategy, a lower threshold is employed to remove the oxide layer while the appropriate pulse number under different laser intensity and different laser pulse repetition rate are the key issues investigated. Reasonable agreement is obtained between the experimental and simulated results.

1.
Zapka
,
W.
,
Ziemlich
,
W.
, and
Tam
,
A.C.
(
1991
)
Efficient pulsed laser removal of 0.2 µm sized particles from a solid surface
,
Appl. Phys. Lett.
58
,
2217
2219
.
2.
Zhou
,
X.
,
Imasaki
,
K.
,
Furukawa
,
H.
,
Umino
,
H.
,
Sakagishi
,
K.
,
Nakai
,
S.
, and
Yamanaka
,
C.
(
2001
)
Basic Study on Laser Ablation Surface Cleaning of Nuclear Facility
,
Surf. Engi.
, v
17
, n
5
,
384
388
.
3.
Tam
,
A. C.
,
Leung
,
W. P.
,
Zapka
,
W.
, and
Ziemlih
,
W.
(
1992
)
Laser-cleaning Techniques for Removal of Surface Particulates
,
J. Appl. Phys.
,
71
(
7
),
3515
3523
.
4.
Tsunemi
,
A.
,
Hagiwara
,
K.
,
Saito
,
N.
,
Nagasaka
,
K.
,
Miyamoto
,
Y.
,
Suto
,
O.
, and
Tashiro
,
H.
(
1996
)
Complete removal of paint from metal surface by ablation with a TEA CO2 laser
,
Appl. Phys. A
, v
63
, n
5
,
435
439
.
5.
Meja
,
P.
,
Autrie
,
M.
,
Alloncle
,
P.
,
Pasquet
,
P.
,
Oltra
,
R.
, and
Boquillon
,
J. P.
(
1999
)
Laser Cleaning of Oxidized Iron Samples: The Influence of Wavelength and Environment
,
Appl. Phys. A
,
69
,
687
690
.
6.
Solis
,
J.
,
Vega
,
F.
, and
Afonso
,
C. N.
(
1996
)
Kinetics of Laser-induced Surface Melting and Oxide Removal in Single-crystalline Ge
,
Appl. Phys. A.
,
62
,
197
202
.
7.
Lim
,
H.
, and
Kim
,
D.
(
2004
)
Laser-assisted Chemical Cleaning for Oxide-scale Removal from Carbon Steel Surfaces
,
Journal of Laser Applications
, Vol.
16
, Number
1
,
25
30
.
8.
Steen
,
W. M.
(
1998
)
Laser Material Processing
,
Springer-Verlandag
,
London
, pp.
327
350
.
9.
Magyar
,
J.
,
Sklyarov
,
A.
,
Mikaylichenko
,
K.
, and
Yakovlev
,
V.
(
2003
)
Silicon Dioxide Thin Film Removal Using High-power Nanosecond Lasers
,
Appl. Surf. Sci.
,
207
,
306
313
.
10.
Psyllaki
,
P.
, and
Oltra
,
R.
(
2000
)
Preliminary Study on the Laser Cleaning of Stainless Steel after High Temperature Oxidation
,
Materials Science & Engineering, A
282
,
145
152
.
11.
Wesner
,
D. A.
,
Mertin
,
M.
,
Lupp
,
F.
, and
Kreutz
,
E. W.
(
1996
)
Cleaning of Copper Traces on Circuit Boards with Excimer Laser Radiation
,
Appl. Surf. Sci.
,
96-98
,
479
483
.
12.
Yonezawa
,
Y.
,
Minamikawa
,
T.
,
Morimoto
,
A.
, and
Shimizu
,
T.
(
1998
)
Removal of Surface Oxides on Copper by Pulsed Laser Irradiation
,
Jpn. J. Appl. Phys.
, Vol.
37
,
4505
4509
.
13.
Kearns
,
A.
,
Fischer
,
C.
,
Watkins
,
K. G.
,
Glasmacher
,
M.
,
Kheyrandish
,
H.
,
Brown
,
A.
,
Steen
,
W. M.
, and
Beahan
,
P.
(
1998
)
Laser Removal of Oxides from a Copper Substrate Using Q-switched Nd:YAG Radiation at 1064nm, 532nm and 266nm
,
Appl. Surf. Sci.
,
127-129
,
773
780
.
14.
Lee
,
J. M.
,
Watkins
,
K. G.
, and
Steen
W. M.
(
2001
)
Characterization of Laser Cleaning of Copper for Soldering Processes
,
ASME J. Manuf. Sci. Eng.
,
23
,
521
527
.
15.
Lee
,
S. K.
,
Yoon
,
K. K.
,
Whang
,
K. H.
, and
Na
,
S. J.
(
1999
)
Excimer Laser Ablation removal of Thin Chromium films from Glass Substrates
,
Surf. Coat. Technol.
,
113
,
63
74
.
16.
Azzam
,
R. M. A.
, and
Bashara
,
N. M.
(
1977
)
Ellipsometry and polarized light
,
North-Holland Pub. Co.
,
New York
.
17.
Vickerman
,
J. C.
(
1997
),
Surface Analysis-The principal Techniques
,
JohnWiley&Sons Ltd
,
Chichester, England
.
18.
Hauffe
,
K.
(
1965
)
Oxidation of Metals
,
Plenum Press
,
New York
.
19.
Zhang
,
W. W.
,
Yao
,
Y. L.
, and
Chen
,
K.
(
2001
)
Modelling and Analysis of UV Laser Micromachining of Copper
,
Int. J. Adv. Manuf. Technol.
,
18
,
323
331
.
20.
Samsonov
,
G. V.
(
1982
)
The Oxide Handbook, IFI/Plenum
,
New York
.
21.
Grivoriev
,
I. S.
and
Meilikhov
,
E. Z.
(
1997
)
Handbook of Physical Quantities
,
CRC Press
,
New York
.
22.
Duley
,
W.
(
1996
)
UV Lasers: Effects and Applications in Materials Science
,
Cambridge University Press
,
Cambridge
.
23.
Palik
,
E.
(
1991
)
Handbook of Optical Constants of Solids II
,
Academic Press
,
San Diego
, pp.
875
878
.
24.
Meirmanov
,
A. M.
(
1992
)
The Stefan Problem
,
Walter de Gruyter
,
Berlin
.
25.
Knight
,
C. J.
(
1979
)
Theoretical modeling of rapid surface vaporization with back pressure
,
AIAA Journal
,
17
(
5
),
519
523
.
26.
Voller
,
V. R.
and
Prakash
,
C.
(
1987
)
A fixed grid numerical modeling methodology for convection– diffusion mushy region phase-change problems
,
Int. J. of Heat Mass Transfer
,
30
(
8
),
140
145
.
27.
Chastain
,
J.
, and
King
,
J. R.
(
1995
)
Handbook of X-ray Photoelectron spectroscopy
,
Physical Electronics, Inc.
,
Eden Prairie
.
28.
Haugsrud
,
R.
(
2002
)
The Influence of Water Vapor on the Oxidation of Copper at Intermediate Temperature
,
Journal of the electrochemical Society
,
149
(
1
),
B14
B21
.
This content is only available via PDF.
You do not currently have access to this content.