Robot-based remote welding with solid-state lasers increasingly becomes an issue for automotive industry due to low process costs in comparison to spot welding or conventional laser welding.

When discussing robot-based remote welding, very often the necessity of high beam qualities is emphasized, which can so far only be delivered by diode-pumped Yb:YAG disc and fibre lasers. However, industrially qualified and widely-used today are Nd:YAG rod lasers with distinctly lower beam qualities. Employing these beam sources for remote welding with standard galvanometer-based scanners either results in very small workspaces or very big spot sizes, in both cases lowering overall process efficiency.

A new scanner concept for high-power rod lasers is introduced that provides workspaces which are at least twice as large as available scanners while maintaining a reasonable focal diameter. This way, investment in new laser sources can be reduced substantially, which makes remote welding a very attractive choice for users already employing lasers in manufacturing.

1.
Ream
,
S.
(
1993
)
Laser Scanner Lap Welding
, in
Proceedings of the International Body Engineering Conference, Adv. Technologies and Processes
,
44
47
.
2.
Macken
,
J.
(
1996
)
Remote Laser Welding
, in
Proceedings of the International Body Engineering Conference, Adv. Technologies and Processes
,
11
15
.
3.
Klotzbach
,
A.
,
Morgenthal
,
L.
&
Beyer
,
E.
(
1999
)
Laserstrahlschweißen durch High-Speed-Strahlbewegung
, in
LaserOpto
Vol.
31
, N.
2
,
64
65
.
4.
Emmelmann
,
C.
(
2005
)
Laser Remote Welding – Status and Potential for Innovations in Industrial Production
, in
Proceedings of the 3rd International Conference on Lasers in Manufacturing
,
Munich, Germany
,
1
6
.
5.
Ostendorf
,
A.
(
2005
)
Laser Remote Welding – From Development to Application
, in
Proceedings of the European Automotive Laser Application (EALA)
,
Bad Nauheim, Germany
,
196
230
.
6.
Menin
,
R.
(
2005
)
The COMAU Standard 3D Remote Solution
, in
Proceedings of the European Automotive Laser Application (EALA)
,
Bad Nauheim, Germany
,
331
349
.
7.
Grupp
,
M.
,
Seefeld
,
T.
&
Vollertsen
,
F.
(
2003
)
Laser Beam Welding with Scanner
, in
Proceedings of the 2nd International Conference on Lasers in Manufacturing
,
Munich, Germany
,
375
380
.
8.
Korinth
,
A.
&
Cann
,
J.
(
2005
)
Remote welding impacts auto manufacture
, in
Industrial Laser Solutions
5/2005,
26
31
.
9.
Meiners
,
E.
(
2004
) Remote-Welding in der Blechbearbeitung, in
Handbuch zum 1. VDI Forum Remoteschweißen
,
Hamburg, Germany
.
10.
Rauschdorf
,
L.
&
Lingner
,
M.
(
2005
)
Das Remote-Schweißen in der industriellen Mehrschichtfertigung
, in
Proceedings of the European Automotive Laser Application (EALA)
,
Bad Nauheim, Germany
,
310
330
.
11.
Heinemann
,
S.
(
2005
)
Going with the FLO
, in
Industrial Laser Solutions
6/2005,
21
23
.
12.
Rath
,
W.
(
2005
)
Remote laser welding using CO2-or solid state lasers
, in
Proceedings of the 3rd International Conference on Lasers in Manufacturing
,
Munich, Germany
,
7
12
.
13.
Klotzbach
,
A.
&
Sommer
,
J.
(
2003
)
Remote-Laserstrahlschweißen – schnell und prozesssicher
, in Photonik 6/2003, 36.
14.
Gruber
,
F.J.
(
2005
)
Mit RobScan in die Serie. Robotergeführtes Remote-Laserschweißen ist bei DaimlerChrysler auf dem Weg in den Karosseriebau
, in EuroLaser 2/2005,
20
25
.
15.
Sasnett
,
M.W.
(
1992
) Propagation of Multimode Laser Beams – The M2 Factor, in
Hall
,
D.R.
&
Jackson
,
P.E.
(ed)
The Physics and Technology of Laser Resonators
,
Institute of Physics Publishing
,
132
142
.
16.
Kogelnik
,
H.
(
1979
) Propagation of Laser Beams, in
Shannon
,
R.R.
&
Wyant
,
J.C.
(ed)
Applied Optics and Optical Engineering VII
,
Academic Press
,
156
190
.
17.
Kogelnik
,
H.
&
Li
,
T.
(
1966
)
Laser Beams and Resonators
,
Proceedings of the IEEE
Vol.
54
, N.
10
,
1312
1329
.
18.
Rohr
,
B.F.
(
1995
)
Testing high-performance galvanometer-based optical scanners
, in
Proceedings of the International Society for Optical Engineering
, Vol.
2383
,
460
469
.
19.
Marshall
,
G.F.
(
2004
)
Handbook of Optical and Laser Scanning
,
Marcel Dekker
.
20.
Laikin
,
M.
(
1991
)
Lens Design
,
Marcel Dekker
,
233
239
.
21.
Ren
,
D.
(
2003
)
Lens Design
, in
Driggers
,
R.G.
(ed)
Encyclopedia of Optical Engineering, Marcel Dekker
,
1057
1067
.
22.
Grey
,
D.J.
(
1997
)
Design of high performance CO2 laser beam scanning objectives
, in
Proceedings of the International Society for Optical Engineering
Vol.
2383
,
460
469
.
23.
Kienemund
,
A.
(
2004
) Scannerauslegung für die Laser Remote Schweißanwendung, in
Handbuch zum1. VDI Forum Remoteschweißen
,
Hamburg, Germany
.
24.
Kienemund
,
A.
(
2004
)
Entwicklung des Strahlführungssystems
, in
Kling
,
R.
(ed.)
Abschlussbericht zum BMBF-Projekt Prozesssicheres Remoteschweißen für flexible Fertigungskonzepte (ProFi)
,
22
31
.
25.
Gieras
,
J.F.
&
Piech
,
Z.J.
(
2000
)
Linear Synchronous Motors
,
CRC Press
.
26.
Budig
,
K.P.
(
1983
)
Drehstromlinearmotoren
,
Alfred Hüthig Verlag
.
27.
Heinemann
,
G.
&
Papiernik
,
W.
(
1997
)
Lineare Direktantriebe als Vorschubantriebe für Werkzeugmaschinen
, Working Paper, Siemens AG.
28.
Stemmann
,
J.
,
Albrecht
,
T.
&
Emmelmann
,
C.
(
2005
)
Repeatability analysis of robot-based remote welding systems
, in
Proceedings of the 3rd International Conference on Lasers in Manufacturing
,
Munich, Germany
,
25
31
.
This content is only available via PDF.
You do not currently have access to this content.