Laser cladding is a versatile tool to deposit functional layers on surfaces of work pieces. With a laser beam the energy can be brought localized to the interaction zone compared to other cladding methods. It is possible to keep the heat introduced into the work piece low. On the other side due to the track wise generation of the cladding the processing time is long. Due to these facts there is a great motivation to increase the scan velocity of the laser cladding process in order to decrease the processing time and decrease heat losses in the work piece even more.

Nowadays laser cladding is often running with scan velocities of much less than 2 m/min. In this research project we increase the scan velocity about one order of magnitude. With the increase of the scan velocity the laser power and the powder feed rate are adapted in order to have comparable conditions for every scan velocity.

It was possible to decrease the process time while simultaneously increase the efficiency. In actual work a basic understanding of the laser cladding process at these parameters is generated. Basically two effects are investigated. Beside the decrease of thermal conductivity losses there is a significantly more intense interaction of laser beam and powder particles at parameters connected to high scan velocities. Recent results indicate that the latter effect is responsible for the significant increase in process efficiency.

1.
Vollertsen
,
F.
,
Partes
,
K.
,
Meijer
,
J.
, (
2005
)
State of the art of Laser Hardening and Cladding
,
Proceedings LIM
, p.
281
305
2.
Kohn
,
H.
,
Partes
,
K.
,
Seefeld
,
T.
, (
2005
)
Bauteilregenerierung durch Laserstrahlbeschichten – Anwendungsbeispiele und Forschungstrends
, Tagungsband zur 6. Sondersitzung Schweißen im Schiffbau und Ingenieurbau, p.
89
96
3.
MacIntyre
,
R.M.
, (
1983
)
Laser Hard Surfacing of Gas turbine Blade Shroud interlocks
, LIM-1, p.
213
218
4.
Eboo
,
K.
,
Lindemanis
,
A.E.
, (
1983
)
Advantages in Laser cladding Technology
,
Proc. SPIE
527
, p.
86
94
5.
Tuominen
,
J.
,
Hayhurst
,
P.
,
Eronen
,
V.
,
Vuoristo
,
P.
,
Mäntylä
,
T.
(
2003
)
Comparisation of multi-feed and off-axis high power diode laser (HPDL) cladding
in
Proc. Of SPIE
Vol.
4973
,
San Jose, CA, USA
, p.
116
127
6.
Picasso
,
M.
,
Marsden
,
C.F.
,
Wagniere
,
J.-D.
,
Frenk
,
A.
,
Rappaz
,
M.
, (
1994
)
A Simple but Realistic Model for Laser Cladding
,
Metallurgical and Materials Transactions B
, Volume
25B
, p.
281
291
7.
Beyer
,
E.
,
Wissenbach
,
K.
(
1998
) Oberflächenbehandlung mit Laserstrahlung,
Springer-Verlag Berlin
Heidelberg
, pp.
68
8.
Carslaw
&
Jaeger
, (
1997
)
Conduction of Heat in Solids
, second edition,
Oxford University Press
9.
Chryssolouris
,
G.
, (
1991
)
Laser Machining Theory and Practice
,
Springer - Verlag
New York
10.
Kebbel
,
V.
,
Geldmacher
,
J.
,
Partes
,
K.
,
Jüptner
,
W.
, (
2005
)
Characterisation of high-density particle distributions for optimisation of laser cladding processes using digital holography
,
Proc. SPIE
5856
, p.
856
564
This content is only available via PDF.
You do not currently have access to this content.