Functionally-graded or composite components (FGCs) have been recognised as having immense potential for many industries. So far, deposition of compositionally graded alloys is the only method that has been shown to be a practical way to produce FGCs. In this work, a second way, that allows graded structures of a single material to be formed by direct metal deposition, is investigated. Simple component samples are built using a diode laser direct metal deposition system with a side feed nozzle and blends of water- and gas- atomised 316L steel powder in varying proportions. Trends in surface finish, wall integrity and overall wall dimensions are immediately apparent. Further analysis using optical, x-ray diffraction and mechanical testing methods shows that it is possible to produce differences in physical properties such as tensile strength and hardness across a formed component. The system is modelled and the results discussed in terms of the thermal cycle of the build material.

1.
Grunenwald
,
B.
,
Nowotny
,
S.
,
Hennig
,
W.
,
Dausinger
,
F.
&
Hugel
,
H.
(
1993
)
New technology developments in laser cladding
, in
Proceedings of the 12th International Congress on Applications of Lasers and Electro-Optics (ICALEO
),
Orlando FL USA
,
934
944
.
2.
Shin
,
K.-H.
,
Natu
,
H.
,
Dutta
,
D.
&
Mazumder
,
J.
(
2003
)
A method for the design and fabrication of heterogeneous objects
,
Materials & Design
24
(
5
),
339
353
.
3.
Noecker
,
F. F.
II
&
DuPont
,
J. N.
(
2002
)
Functionally graded copper - Steel using LENS process
, in
Proceedings of the Proceedings of Symposium on Rapid Prototyping of Materials
, Oct 7-10 2002,
Columbus OH USA
,
139
147
.
4.
Iakovlev
,
A.
,
Trunova
,
E.
,
Grevey
,
D.
&
Smurov
,
I.
(
2002
)
Laser-assisted direct manufacturing of functionally graded 3D objects
,
Proceedings of the International Conference on Lasers, Applications, and Technologies
, Jun 22-27 2002,
Moscow, Russian Federation
,
243
252
.
5.
Mazumder
,
J.
,
Schifferer
,
A.
&
Choi
,
J.
(
1999
)
Direct materials deposition: designed macro and microstructure
,
Materials Research Innovations
3
(
3
),
118
131
.
6.
Mazumder
,
J.
(
2003
)
Designed materials by direct materials deposition
, in
Proceedings of the 22nd International Congress on Applications of Lasers and Electro-optics (ICALEO
),
Jacksonville FL USA
, CD.
7.
Schwendner
,
K. I.
,
Banerjee
,
R.
,
Collins
,
P. C.
,
Brice
,
C. A.
&
Fraser
,
H. L.
(
2001
)
Direct laser deposition of alloys from elemental powder blends
,
Scripta Materialia
45
(
10
),
1123
1129
.
8.
Karatas
,
C.
&
Saritas
,
S.
(
2001
)
Rheological properties of mixed gas and water atomized stainless steel powder MIM feedstock
,
International Journal of Powder Metallurgy
37
(
8
),
39
44
.
9.
Pinkerton
,
A. J.
&
Li
,
L.
(
2003
)
Effects of powder geometry and composition in coaxial laser deposition of 316L steel for rapid prototyping
,
CIRP Annals - Manufacturing Technology
52
(
1
),
181
184
.
10.
Pinkerton
,
A. J.
&
Li
,
L.
(
2003
)
Process characteristics and effects of gas- and water-atomized stainless steel powders in laser-based rapid tooling
,
Journal of Laser Applications
15
(
3
),
172
178
.
11.
Pinkerton
,
A. J.
&
Li
,
L.
(
2003
)
Rapid prototyping using direct laser deposition - The effect of powder atomization type and flowrate
,
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
217
(
6
),
741
752
.
12.
American Society for
Metals
(
1990
) Metals Handbook (10 ed. Vol. 1: Properties and Selection: Irons,
Steels and High Performance Alloys
)
ASM International
Ohio USA
.
13.
McLean
,
M. A.
,
Shannon
,
G. J.
&
Steen
,
W. M.
(
1997
)
Laser generating metallic components
,
Proceedings of SPIE
3092
,
753
756
.
14.
Griffith
,
M. L.
,
Ensz
,
M. T.
,
Puskar
,
J. D.
,
Robino
,
C. V.
,
Brooks
,
J. A.
,
Philliber
,
J. A.
, et al (
2000
)
Understanding the microstructure and properties of components fabricated by Laser Engineered Net Shaping (LENS
), in
Proceedings of the Solid Freeform and Additive Fabrication-2000
, Apr 24-26 2000,
San Francisco CA USA
,
9
20
.
15.
Keicher
,
D. M.
,
Miller
,
W. D.
,
Smugeresky
,
J. E.
&
Romero
,
J. A.
(
1998
)
Laser Engineered Net Shaping (LENS): Beyond rapid prototyping to direct fabrication
, in
Proceedings of the Proceedings of the 1998 TMS Annual Meeting
, Feb 15-19 1998,
San Antonio, TX, USA
,
369
377
.
16.
Zhang
,
Y.
&
Shi
,
L.
(
2002
)
Research on laser direct metal deposition
, in
Proceedings of the First International Symposium on High-Power Laser Macroprocessing
, May 27-31 2002,
Osaka Japan
,
487
492
.
17.
Li
,
W.-B.
,
Engstrom
,
H.
,
Powell
,
J.
,
Tan
,
Z.
&
Magnusson
,
C.
(
1996
)
Redistribution of the beam power in laser cladding by powder injection
,
Lasers in Engineering
5
(
3
),
175
183
.
18.
Liu
,
C.-Y.
&
Lin
,
J.
(
2003
)
Thermal processes of a powder particle in coaxial laser cladding
,
Optics & Laser Technology
35
(
2
),
81
86
.
19.
Meriaudeau
,
F.
,
Dumont
,
C.
,
Aluze
,
D.
&
Truchetet
,
F.
(
1997
)
Investigation of the particle speed using image processing for the laser cladding process
,
Proceedings of SPIE
3101
,
211
220
.
20.
Pinkerton
,
A. J.
&
Li
,
L.
(
2003
)
Direct metal deposition by laser - modelling the effect of increased beam coupling
, in
Proceedings of the 22nd International Congress on Applications of Lasers and Electro-optics (ICALEO
),
Jacksonville FL USA, CD
.
21.
Kashyap
,
B. P.
&
Tangri
,
K.
(
1990
)
On the Hall-Petch relationship in type 316L stainless steel at room temperature
,
Scripta Metallurgica et Materialia
24
(
9
),
1777
1782
.
22.
Kurz
,
W.
&
Fisher
,
D. J.
(
1990
)
Fundamentals of Solidification
(3 ed.),
Trans Tech Publications Limited
.
23.
Hofmeister
,
W.
,
Griffith
,
M.
,
Ensz
,
M.
&
Smugeresky
,
J.
(
2001
)
Solidification in direct metal deposition by LENS processing
,
JOM
53
(
9
),
30
34
.
24.
Gorman
,
P.
,
Smugeresky
,
J. E.
&
Keicher
,
D. M.
(
2002
)
Evaluation of property dependence on build rate for LENS powder metal deposition
, in
Proceedings of the Proceedings of Symposium on Rapid Prototyping of Materials
, Oct 7-10 2002,
Columbus OH USA
,
167
173
.
25.
Pinkerton
,
A. J.
&
Li
,
L.
(
2004
)
An analytical model of energy distribution in laser direct metal deposition
,
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
218
(
4
),
363
374
.
26.
Gedda
,
H.
,
Powell
,
J.
,
Wahlstrom
,
G.
,
Li
,
W.-B.
,
Engstrom
,
H.
&
Magnusson
,
C.
(
2002
)
Energy redistribution during CO2 laser cladding
,
Journal of Laser Applications
14
(
2
),
78
82
.
27.
Nyborg
,
L.
&
Olefjord
,
I.
(
1989
)
Surface oxidation of steel powder during atomisation
,
Key Engineering Materials
29
31
, 9-19.
28.
Duley
,
W. W.
(
1986
). Laser material interactions of relevance to metal surface treatment. In
Draper
,
C. W.
&
Mazzsoldi
,
P.
(Eds.),
Laser Surface Treatment of Metals
(pp.
3
16
).
Dortrecht
:
Martinus Nijhoff Publishers
.
This content is only available via PDF.
You do not currently have access to this content.