Although the use of the femtosecond laser for micromachining has recently become more popular, the selection of process parameters has been relying mainly on the trial-and-error procedure. This is because at the femtosecond time scale and nanometer length scale the complicated physical phenomena occurring during the laser-material interactions are not well understood. Apparently, fundamental studies to understand the governing laws are required to identify and control key process parameters in order to achieve high quality ablations. This study proposes a quantum model to study the femtosecond laser ablation of wide bandgap materials. The Fokker-Planck equation is employed to calculate the free electron generation through the impact ionization and photoionization processes. The quantum theories are used to calculate the free electron heating, free electron relaxation time, and the spatial and temporal dependent optical properties for the dense plasma generated by the femtosecond pulse. The predicted ablation threshold and ablation depth of barium aluminum borosilicate and fused silica are in agreement with published experimental data. The model greatly improves the prediction precision of ablation depth and can predict the crater shape. The flat-bottom crater, observed experimentally by a femtosecond Gaussian beam, can be well explained by the proposed model.

1.
Dumitru
,
G.
,
Romano
,
V.
,
Weber
,
H.P.
,
Sentis
,
M.
&
Marine
,
W.
(
2001
)
Femtosecond ablation of ultrahardmaterials
,
Applied Physics A
74
(
6
),
729
739
.
2.
Lugovskoy
,
A.V.
&
Bray
,
I.
(
1999
)
Ultrafast electron dynamics in metals under laser irradiation
,
Physical Review B
60
,
3279
3288
.
3.
Pronko
,
P.P.
,
Dutta
S.K.
,
Du
,
D.
&
Singh
,
R.K.
(
1995
)
Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses
,
Journal of Applied Physics
78
(
10
),
6233
6240
.
4.
Lenzner
,
M.
,
Krüger
,
J.
,
Sartania
,
S.
,
Cheng
,
Z.
,
Spielmann
,
C.
,
Mourou
,
G.
,
Kautek
,
W.
&
Krausz
F.
(
1998
)
Femtosecond optical breakdown in dielectrics
,
Physical Review Letter
80
,
4076
4079
.
5.
Liu
,
X.
,
Du
,
D.
&
Mourou
,
G.
(
1997
)
Laser ablation and micromachining with ultrashort laser pulse
,
IEEE Journal of Quantum Electronics
33
,
1706
1716
.
6.
Ladieu
,
F.
,
Martin
,
P.
, &
Guizard
,
S.
(
2002
)
Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics
,
Applied Physics Letter
81
,
957
959
.
7.
Jiang
L.
&
Tsai
,
H.L.
(
2003
)
Femtosecond laser ablation: challenges and opportunities
,
Proceeding of NSF workshop on Research Needs in Thermal, Aspects of Material Removal
,
Stillwater
,
Oklahoma, USA
,
163
177
.
8.
Stoian
,
R.
,
Ashkenasi
,
D.
,
Rosenfeld
,
A.
, &
Campbell
,
E.E.B.
(
2000
)
Coulomb explosion in ultrashort pulsed laser ablation of Al2O3
,
Physical Review B
62
,
13167
13173
.
9.
Tien
,
A.
,
Backus
,
S.
,
Kapteyn
,
H.
,
Murnane
,
M.
, &
Mourou
,
G.
(
1999
)
Short-pulse laser damage in transparent materials as a function of pulse duration
,
Physical Review Letter
82
,
3883
3886
.
10.
Stuart
,
B.C.
,
Feit
,
M.D.
,
Herman
,
S.
,
Rubenchik
,
A.M.
,
Shore
,
B.W.
&
Perry
,
M.D.
(
1996
)
Nanosecond-to-femtosecond laser-induced breakdown in dielectrics
,
Physical Review B
53
,
1749
1761
.
11.
Stuart
,
B.C.
,
Feit
M.D.
,
Rubenchik
,
A.M.
,
Shore
,
B.W.
&
Perry
M.D.
(
1995
)
Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses
,
Physical Review Letter
74
,
2248
2251
.
12.
Gamaly
,
E.G.
,
Rode
,
A.V.
,
Luther-Davies
,
B.
&
Tikhonchuk
,
V.T.
(
2002
)
Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics
,
Physics of Plasmas
9
,
949
957
.
13.
Du
,
D.
,
Liu
,
X.
,
Korn
,
G.
,
Squier
,
J.
&
Mourou
,
G.
(
1994
)
Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs
,
Applied Physics Letter
64
,
3071
3074
.
14.
Perry
,
M.D.
,
Stuart
,
B.C.
,
Banks
,
P.S.
,
Feit
,
M.D.
,
Yanovsky
,
V.
, &
Rubenchik
,
A.M.
(
1999
)
Ultrashort-pulse laser machining of dielectric materials
,
Journal of Applied Physics
85
,
6803
6810
.
15.
Lifshitz
,
E.M.
&
Pitaevskii
,
L.P.
(
1981
)
Physical Kinetics
,
Pergamon press
.
16.
Ridley
,
B.K.
(
1993
)
Quantum Processes in Semiconductors
,
Clarendon press
.
17.
Keldysh
,
L.V.
(
1965
)
Ionization in the field of a strong electromagnetic wave
,
Soviet Physics JETP
20
,
1307
1314
.
18.
Rethfeld
,
B.
,
Kaiser
,
A.
,
Vicanek
,
M.
&
Simon
,
G.
(
2002
)
Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation
,
Physical Review B
65
,
214303
214313
.
19.
Fox
,
M.
(
2001
)
Optical Properties of Solids
,
Oxford University Press
.
20.
Lee
Y.T.
&
More
,
R.M.
(
1984
)
An electron conductivity model for dense plasma
,
Physics of Fluids
27
(
5
),
1273
1286
.
21.
Eidmann
,
K.
,
Meyer-ter-Vehn
,
J.
,
Schlegel
,
T.
&
Hüller
,
S.
(
2000
)
Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter
,
Physical Review E
62
,
1202
1214
.
22.
Ashcroft
,
N.W.
&
Mermin
,
N.D.
(
1976
)
Solid State Physics
,
Holt, Rinehart, and Winston
.
23.
Zakharov
,
A.S.
,
Volkov
,
M.V.
,
Gurov
,
I.P.
,
Temnov
,
Sokolovski-Tinten
, V.V. K. &
von der Linde
,
D.
(
2002
)
Interferometric diagnostics of ablation craters formed by femtosecond laser pulses
,
Journal of Optical Technology
69
(
7
),
478
482
.
24.
Krüger
,
J.
&
Kautek
,
W.
(
1999
)
The femtosecond pulse laser: a new tool for micromaching
,
Laser Physics
9
,
30
40
.
25.
Lapczyna
,
M.
,
Chen
,
K.P.
,
Herman
,
P.R.
,
Tan
,
H.W.
, &
Marjoribanks
,
R.S.
(
1999
)
Ultra-high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses
,
Applied Physics A
69
(Suppl.)
S883
S886
.
26.
Furusawa
,
K.
,
Takahashi
,
K.
,
Cho
,
S.H.
,
Kumagai
,
H.
,
Midorikawa
,
K.
&
Obara
,
M.
(
2000
)
Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst
,
Journal of Applied Physics
87
,
1604
1609
.
27.
Werelius
,
K.
&
Weigl
,
P.
(
2003
)
Manufacturing of ceramic dental prosthesis with ultra-short laser pulses
,
Proceeding the 22nd International Congress on Applications of Lasers and Electro-Optics
,
Jacksonville, Florida, USA
.
This content is only available via PDF.
You do not currently have access to this content.