In femtosecond laser processing of metals, the well-known two-temperature models have been widely used to calculate the photon-electron and electron-lattice interactions and energy transport. However, the estimations of some critical parameters, such as the electron heat capacity and reflectivity, in the models are limited to low fluences and cannot correctly predict the damage threshold without using fitting variables. This paper extends the existing two-temperature models by using quantum treatments for free electrons to calculate the time and space dependent optical and thermal properties, including the electron heat capacity, electron relaxation time, electron conductivity, reflectivity and absorption coefficient. The improved two-temperature model is employed to investigate the heating process of thin gold films until melting occurs, which is assumed to be the initiation of damage. The predicted damage threshold fluences for gold films using the proposed new model are in agreement with published experimental data. The effect of pulse duration on the damage threshold fluence is also studied.

1.
Rethfeld
,
B.
,
Kaiser
,
A.
,
Vicanek
,
M.
&
Simon
,
G.
(
2002
)
Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation
,
Physical Review B
65
,
214303
214313
.
2.
Del Fatti
,
N.
,
Voisin
,
C.
,
Achermann
,
M.
,
Tzortzakis
,
S.
,
Christofilos
,
D.
, and
Vallee
,
F.
(
2000
)
Nonequilibrium electron dynamics in noble metals
,
Physical Review B
61
,
16956
16966
.
3.
Fujimoto
,
J.G.
,
Liu
,
J.M.
,
Ippen
,
E.P.
, and
Bloembergen
,
N.
(
1984
)
Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures
,
Physical Review Letter
53
,
1837
1840
.
4.
Schoenlein
,
R.W.
,
Lin
,
W.Z.
,
Fujimoto
,
J.G.
, and
Eesley
,
G.L.
(
1987
)
Femtosecond studies of nonequilibrium electronic processes in metals
,
Physical Review Letter
58
,
1680
1683
.
5.
Qiu
,
T.Q.
, and
Tien
,
C.L.
(
1992
)
Short-pulse laser heating on metals
,
International Journal of Heat Mass and Transfer
35
,
719
726
.
6.
Qiu
,
T.Q.
and
Tien
,
C.L.
(
1993
)
Heat transfer mechanisms during short-pulse laser heating of metals
,
ASME Journal of Heat Transfer
115
,
835
841
.
7.
Qiu
,
T.Q.
, and
Tien
,
C.L.
(
1994
)
Femtosecond laser heating of multi-layer metals-I analysis
,
International Journal of Heat Mass and Transfer
37
,
2789
2797
.
8.
Qiu
,
T.Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W.E.
, and
Tien
,
C.L.
(
1994
)
Femtosecond laser heating of multi-layer metals-II experiments
,
International Journal of Heat Mass and Transfer
37
,
2799
2808
.
9.
Tzou
,
D.Y.
,
Chen
,
J.K.
, and
Beraun
,
J.E.
, (
2002
)
Hot-electron blast induced by ultrashort-pulsed lasers in layered media
,
International Journal of Heat Mass and Transfer
45
,
3369
3382
.
10.
Elsayed-Ali
,
H.E.
,
Norris
,
T.B.
,
Pessot
,
M.A.
, and
Mourou
,
G.A.
(
1987
)
Time-resolved observation of electron-phonon relaxation in copper
,
Physical Review Letter
58
,
1212
1215
.
11.
Schoenlein
,
R.W.
,
Lin
,
W.Z.
,
Fujimoto
,
J.G.
, and
Eesley
,
G.L.
(
1987
)
Femtosecond studies of nonequilibrium electronic processes in metals
,
Physical Review Letter
58
,
1680
1683
.
12.
Hertel
,
T.
,
Knoesel
,
E.
,
Wolf
,
M.
, and
Ertl
,
G.
, (
1996
)
Ultrafast electron dynamics at Cu (111): response of an electron gas to optical excitation
,
Physical Review Letter
76
,
535
538
.
13.
Brorson
,
S.D.
,
Kazeroonian
,
A.
,
Moodera
,
J.S.
,
Face
,
D.W.
,
Cheng
,
T.K.
,
Ippen
,
E.P.
,
Dresselhaus
,
M.S.
, and
Dresselhaus
G.
(
1990
)
Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors
,
Physical Review Letter
64
,
2172
2175
.
14.
Eesley
G.L.
, (
1986
)
Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses
,
Physical Review B
33
,
2144
2151
.
15.
Anisimov
,
S.I.
,
Kapeliovich
,
B.L.
, and
Perel’man
,
T.L.
(
1974
)
Electron emission from metal surfaces exposed to ultrashort laser pulses
,
Soviet Physics JETP
39
,
375
377
.
16.
Wellershoff
,
S.
,
Hohlfeld
,
J.
,
Güdde
,
J.
,
Matthias
,
E.
(
1999
)
The role of electron-phonon coupling in femtosecond laser damage of metals
,
Applied Physics A
69
(Suppl.),
99
107
.
17.
Ashcroft
,
N.W.
, and
Mermin
N.D.
(
1976
)
Solid State Physics
,
Holt, Rinehart, and Winston
.
18.
Kittel
,
C.
(
1986
)
Introduction to Solid State Physics
,
John Wiley & Sons, Inc.
19.
Gamaly
,
E.G.
,
Rode
,
A.V.
,
Luther-Davies
,
B.
&
Tikhonchuk
,
V.T.
(
2002
)
Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics
,
Physics of Plasmas
9
,
949
957
.
20.
Lee
Y.T.
&
More
,
R.M.
(
1984
)
An electron conductivity model for dense plasma
,
Physics of Fluids
27
(
5
),
1273
1286
.
21.
Jiang
,
L.
, and
Tsai
,
H.L.
(
2004
)
Prediction of crater shape in femtosecond laser ablation of dielectrics
,
Journal of Physics D: Applied Physics
37
,
1492
1496
.
22.
Fox
,
M.
(
2001
)
Optical Properties of Solids
,
Oxford University Press
.
23.
Palpant
,
B.
,
Prével
,
B.
,
Lermé
,
J.
,
Cottancin
,
E.
, and
Pellarin
,
M.
(
1998
)
Optical properties of gold clusters in the size range 2–4 nm
,
Physical Review B
57
,
1963
1970
.
24.
Stuart
,
B.C.
,
Feit
,
M.D.
,
Herman
,
S.
,
Rubenchik
,
A.M.
,
Shore
,
B.W.
, and
Perry
,
M.D.
(
1996
)
Optical ablation by high-power short-pulse lasers
,
Journal of the Optical Society of America B
13
,
459
468
.
This content is only available via PDF.
You do not currently have access to this content.