Direct write laser doping is used to fabricate a PIN diode in a semi-insulating 6H-SiC wafer comprised of a p-type zone in one surface and an n-type zone in the opposing surface separated by an insulating region. Ohmic and Schottky contacts ate fabricated by a laser metallization technique which converts silicon carbide to a conductive phase without the addition of metal. Trimethylaluminum (TMA) and nitrogen are the precursors used to laser dope p-type and n-type regions, respectively. Laser doping of nitrogen in silicon carbide epilayers and single crystal substrates increase the dopant concentration by two orders of magnitude and produce both deep (500-600 nm) and shallow (50 nm) junctions, respectively. Laser-assisted effusion/diffusion is used to dope aluminum in silicon carbide wafers and a 150 nm p-type doped junction can be fabricated in semi-insulating 6H-SiC and n-doped 4H-SiC wafers. At a reverse bias of 40V, the leakage current density is 8.3×10−3 A/cm2. The leakage current density increases from 6.9×10−4 A/cm2 at 20°C to 1.3×10−2 A/cm2 at 300°C at reverse bias of 20V. The average dopant concentration in the p-region is calculated as 7.46 ×1016 cm−3 and the Schottky barrier height formed by the p-type zone is 0.75 eV based on the C-V characteristic. This laser-fabricated diode is intended for use in high-temperature, high-voltage and high-frequency switching and sensing applications.

1.
V.E.
Chelnokov
and
A. L.
Syrkin
. (
1997
)
High temperature electronics using SiC: Actual situation and unsolved problems
,
Mater. Sci. Eng.
, B
46
,
248
253
.
2.
D.K.
Sengupta
,
N.R.
Quick
,
A.
Kar
(
2001
)
Laser conversion of electrical properties for silicon carbide device applications
,
Journal of Laser Applications
, Vol.
13
,
26
31
.
3.
A.
Edwards
,
M.C.
Ridgway
,
G.
Kelner
, and
N.
Papanicolau
(
1997
)
Compensation implants in 6HSiC
,
J. Appl. Phys.
82
,
4223
4227
.
4.
T.
Troffer
,
M.
Schadt
,
T.
Frank
,
H.
Itoh
,
G.
Pensel
,
J.
Heindi
,
H.P.
Strunk
, and
M.
Maier
(
1997
)
Doping of SiC by implantation of boron and aluminum
,
Phys. Status Solidi
A162
,
277
298
.
5.
E.M.
Handy
,
M.V.
Row
,
O.W.
Holland
,
P.H.
Chi
,
K.A.
Jones
,
M.A.
Derenge
,
R.D.
Vispute
, and
T.
Venkatesen
(
2000
)
Al, B, and Ga ion-implantation doping of SiC
,
J. Electron. Mater.
29
,
1340
1345
.
6.
L.A.
Christel
and
J.F.
Gibbons
(
1981
)
Stoichiometric disturbances in ion implanted compound semiconductors
,
J. Appl. Phys.
52
,
5050
5055
.
7.
N.R.
Quick
, US patent 5,145,741 (September 1992), US patent 5,837,607 (November 1998) and US patent 6,670,693 (December
2003
).
8.
I.A.
Salama
,
N.R.
Quick
,
A.
Kar
(
2002
)
Laser-fabricated metal-semiconductor junctions on silicon carbide substrates
,
Proceedings of 21st International Congress on Applications of Lasers & Electro-Optics
.
9.
I.A.
Salama
,
N.R.
Quick
,
A.
Kar
(
2003
)
Laser direct-metallization of silicon carbide without metal deposition
,
Materials Research Society Symposium Proceedings
V
764
,
75
80
.
10.
I.A.
Salama
,
C.F.
Middleton
,
N.R.
Quick
,
G. D.
Boreman
and
A.
Kar
(
2003
)
Laser-metallized silicon carbide schottky diodes for millimeter wave detector and frequency mixing
,
Symp. Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics IV, 204th meeting of the Electrochemical Society
,
Orlando, Florida
, October
12
16
.
11.
I.A.
Salama
,
N.R.
Quick
,
A.
Kar
(
2002
)
Laser doping of silicon carbide substrate
,
Journal of electronic materials
, Vol.
31
,
200
208
.
12.
I.A.
Salama
(
2003
)
Laser doping and metallization of wide bandgap materials: SiC, GaN and AlN
, Ph.D. Dissertation,
University of Central Florida
,
USA
.
13.
I.
Shalish
and
Y.
Shapira
(
2000
)
Stability of schottky contacts with Ta-Si-N amorphous diffusion barriers and overlayers on 6H-SiC
,
J. Vac. Sci. Technol. B.
Vol.
18
. No.
5
.
2477
2481
.
14.
F.
Roccaforte
,
F.L.
Via
,
V.
Raineri
,
R.
Pierobon
and
E.
Zanon
(
2003
)
Richardson’s constant in inhomogeneous silicon carbide schottky contacts
,
J. Appl. Phys.
93
,
9137
9144
.
15.
K.
Fujihira
,
S.
Tamura
,
T.
Kimoto
and
H.
Matsunami
(
2002
)
Low-loss, high-voltage 6H-SiC epitaxial p-i-n diode
,
IEEE Transactions on electron device
, Vol.
49
, No.
1
,
150
154
.
16.
R.
Singh
,
J.A.
Cooper
,
M.R.
Melloch
,
T.P.
Chow
and
J.W.
Palmour
(
2002
)
SiC power schottky and PiN diodes
,
IEEE Transactions on electron device
, Vol.
49
, No.
4
,
665
672
.
17.
Y.
Sugawara
,
D.
Takaama
,
K.
Asana
,
R.
Singh
,
J.
Palmour
and
T.
Hayashi
(
2001
)
12-19kV 4H-SiC pin diodes with low power loss
,
Procedings of 2001 International Sysposium on Power Semiconductor Devices & ICs
,
Osaka
,
27
30
.
This content is only available via PDF.
You do not currently have access to this content.