Conventional laser cladding systems use a focussing nozzle to direct the beam to the work piece, and by using either blown or pre placed powder, they are able to fuse the powder to the substrate. The shortfall of this process is that, once sectioned, a parabolic transverse profile is seen. This is due to the Gaussian irradiance distribution of the beam and no conventional optics can remedy the problem. Diffractive optical elements, however, can be designed for each process. Models of thermal conduction in the powder and the substrate can be utilised to produce a diffractive optical element specific to this operation. This enables a rectangular spot with a semi-idealised intensity cross section to be delivered to the work piece, reorganising 90% of the 1.2kW CO2 laser beam. When the diffractive optical element is applied to the laser cladding process, the resultant transverse clad profile is uniformly rectangular with a lack of ‘shoulder rounding’.

The laser cladding operation produced complex microstructures, which could not be satisfactorily categorised with optical microscopy. This lead to the simplification of the process by removing the powder. Autogenous bead on plate laser welds have therefore been manufactured, using both conventional optics and diffractive optical elements, in order to determine the solidification microstructure of 316L stainless steel. Optical microscopy, electron back-scatter diffraction (EBSD), energy dispersive spectroscopy (EDS), have been employed to assist in the characterisation of the complex microstructures produced.

1.
Locke
,
E.
,
Hoag
,
E.
and
Hella
,
R.
,
1972
.
Deep penetration welding with height power CO2 lasers
Welding Journal
,
52
, p.
S245
.
2.
Alwang
,
W.G.
,
Cavanaugh
,
L.A.
and
Sammartino
,
E.
,
1969
.
Continuous butt welding using a carbon dioxide laser
.
Welding Journal
,
48
, p.
S110
.
3.
Nath
,
A.K.
,
Sridhar
,
R.
,
Ganesh
,
P.
and
Kaul
,
R.
,
2002
.
Laser power coupling efficiency in conduction and keyhole welding austenitic stainless steels
.
Sadhana
,
27
(
3
), p.
383
.
4.
Aihua
,
W.
,
Zengyi
,
T.
and
Beidi
,
Z.
,
1991
.
Laser beam cladding of seating surfaces on exhaust valves
.
Welding Journal
,
70
, p.
S106
.
5.
Jouvard
,
J.M.
,
Grevey
,
D.F.
,
Lemoine
,
F.
and
Vannes
,
A.B.
,
1997
.
Continuous wave Nd:YAG laser cladding modelling: a physical study of track creation during low power processing
.
Journal of Laser Applications
,
9
, p.
43
.
6.
Vilar
,
R.
,
1999
.
Laser cladding
.
Journal of Laser Applications
,
11
, p. 64.
7.
Weerasinghe
,
V.M.
and
Steen
,
W.M.
,
1983
.
Computer simulation model for laser cladding
,.
Transport phenomena in materials processing
, 1983, p
15
.
8.
Lin
,
J.
,
2000
.
Laser attenuation of the focused powder streams in coaxial laser cladding
.
Journal of Laser Applications
,
12
, p.
28
.
9.
Bianco
,
M.
,
Rivela
,
C.
and
Talentino
,
S.
,
1994
.
On-line surface treatment feasibility of industrial components by means of CO2 power laser
.
Laser Materials Processing: Industrial and Microelectronics
,
2207
, p.
53
.
10.
König
,
W.
and
Kirner
,
P.K.
,
1994
.
Laser surface treatments prolongs tool life
.
Laser Materials Processing: Industrial and Microelectronics
,
2207
, p.
44
.
11.
Schnieder
,
M.
,
1998
.
Laser cladding with powder: The effect of some machining parameters on clad properties
, PhD. Thesis,
University of Twente, Enschede
,.
12.
Noden
,
S.
,
2000
. Applications of diffractive optical elements with high power lasers, PhD. Thesis,
Loughborough University
.
13.
David
,
S.A.
,
Viteck
,
J.M.
and
Hebble
,
T.L.
,
1987
.
Effect of Rapid Solidification on stainless steel weld metal microstructures and its implications on the Schaeffler diagram
.
Welding Journal
,
66
, p.
S289
.
14.
Guo
,
W.
and
Kar
,
A.
,
1999
.
Prediction of microstructures in laser welding of stainless steel AISI 304
.
Journal of Laser Applications
,
11
(
4
), p.
185
.
15.
Lippold
,
J.C.
,
1994
.
Solidification behaviour and cracking susceptibility of pulsed-laser welds in austenitic stainless steels
.
Welding Journal
,
73
, p.
S129
.
16.
Lyman
,
C.E.
,
1979
.
Welding Journal
,
58
, p.
S189
.
17.
Elmer
,
J.W.
,
Allen
,
S.M.
and
Eagar
,
T.W.
,
1989
.
Metallurgical Transactions
,
20A
, p.
2117
.
18.
Uenishi
,
K.
,
Seki
,
M.
,
Takatsugu
,
M.
,
Kunimasa
,
T.
,
Kobayashi
,
K.F.
,
Ikeda
,
T.
and
Tsuboi
,
A.
,
2002
.
Microstructure and tensile strength of stainless steel wires micro spot melted by YAG laser
.
Materials Transactions
,
43
(
12
), p.
3083
.
19.
Sundman
,
B.
,
2001
.
TCFE database supplied by TCAB for use with MTDATA
.
20.
Davies
,
R.H.
,
Dinsdale
,
A.T.
,
Chart
,
T.G.
,
Barry
,
T.I.
and
Rand
,
M.H.
,
1989
.
High Temperature Science
,
26
, p.
251
.
21.
Kell
,
J.
,
Tyrer
,
J.R.
,
Jones
,
J.
and
Noden
,
S.
,
2003
.
Computer Generated Holographic Optics used in Laser Powder Fusion (1204
), in
proceedings of the International Congress on Applications of Lasers and Electro Optics ICALEO 2003, USA.
2003, p
86
.
22.
Kell
,
J.
,
Tyrer
,
J.R.
,
Higginson
,
R.L.
,
Thomson
,
R.C.
,
2004
.
Microstructural Characterisation of Autogenous Laser Welds on 316L Stainless Steel Using EBSD and EDS
.
Submitted to the Journal of Microscopy
(May 2004).
This content is only available via PDF.
You do not currently have access to this content.