We have investigated the different mechanisms of photoluminescence (PL) of Si nanocrystals (NCs) due to the quantum confinement effect (QCE) and interface states. Si NCs were formed by pulsed-laser deposition (PLD) in Ar or O2 gas ambient. The collisions between the ejected species greatly influence the morphology of Si NCs and cause a transition from film structure to porous cauliflower-like structure, as the ambient gas pressure increases from 1 mTorr to 1 Torr. The optical absorption of the Si NCs shows an indirect band transition. Broad PL spectra are observed from Si NCs. The peak position and intensity of the PL band at 1.8–2.1 eV are dependent on excitation laser intensity, while intensity changes and blue shifts are observed after oxidation and thermal annealing. The PL band at 2.55 eV displays vibronic structures with periodic spacing of 97 ± 9 meV, while no peak shift is found before and after oxidation and thermal annealing. Combined with the PL of Si NCs obtained by crumbling electrochemical-etched porous Si layer, the results give strong evidence that the PL band at 1.8–2.1 eV is due to the QCE in Si NC core while the PL band at 2.55 eV is related to the localized surface states at SiOx/Si interfaces. Laser annealing of Si NC films was studied. Laser annealing improves the crystallinity and enhances the PL intensity, while high laser fluence causes damages in the films. After laser annealing, ripple structures consisting of nanoparticles are formed around the droplets on the film surface. The ripple period depends on the laser incident angle, which can be explained by the surface scattered wave theory.

1.
S.
Furukawa
and
T.
Miyasato
.
Three-Dimensional Quantum Well Effects in Ultrafine Silicon Particles
.
Jpn. J. Appl. Phys.
Vol.
27
,
1988
; pp.
2207
2209
.
2.
H.
Takagi
,
H.
Ogawa
,
Y.
Yamazaki
,
A.
Ishizaki
, and
T.
Nakagiri
.
Quantum Size Effects on Photoluminescence in Ultrafine Si Particles
.
Appl. Phys. Lett.
Vol.
56
,
1990
; pp.
2379
2380
.
3.
L. T.
Canham
.
Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers
.
Appl. Phys. Lett.
Vol.
57
,
1990
; pp.
1046
1050
.
4.
H. I.
Hanafi
,
S.
Tiwari
, and
I.
Khan
.
Fast and Long Retention-Time Nano-Crystal Memory
.
IEEE Trans. Electron Devices.
Vol.
43
,
1996
; pp.
1553
1558
.
5.
T.
Makino
,
Y.
Yamada
,
N.
Suzuki
, and
T.
Yoshida
.
Annealing Effects on Structures and Optical Properties of Silicon Nanostructured Films Prepared by Pulsed-Laser Ablation in Inert Background
Gas. J. Appl. Phys.
Vol.
90
,
2001
; pp.
5075
5080
.
6.
L. Y.
Chen
, in
Pulsed Laser Deposition of Thin Films
, edited by
D. B.
Chrisey
and
G. K.
Hubler
.
New York
:
John Wiley & Sons
,
1994
; pp.
184
188
.
7.
C.
Delerue
,
G.
Allan
, and
M.
Lannoo
.
Theoretical Aspects of the Luminescence of Porous Silicon
.
Phys. Rev. B.
Vol.
48
,
1993
; pp.
11024
11036
.
8.
G.
Ledoux
,
O.
Guillois
,
D.
Porterat
,
C.
Reynaud
,
F.
Huisken
,
B.
Kohn
, and
V.
Paillard
.
Photoluminescence Properties of Silicon Nanocrystals as a Function of Their Size
.
Phys. Rev. B.
Vol.
62
,
2000
; pp.
15942
15951
.
9.
F. G.
Bell
and
L.
Ley
.
Photoemission Study of SiOx (0 <= X <= 2) Alloys
.
Phys. Rev. B.
Vol.
37
,
1988
; pp.
8383
8393
.
10.
K.
Kimura
and
S.
Iwasaki
.
Vibronic Fine Structure Found in the Blue Luminescence from Silicon Nanocolloids
.
Jpn. J. Appl. Phys.
Vol.
38
,
1999
; pp.
609
612
.
11.
M.
Koos
,
I.
Pocsik
, and
E. B.
Vazsonyi
.
Experimental Proof for Nanoparticle Origin of Photoluminescence in Porous Silicon Layers
.
Appl. Phys. Lett.
Vol.
62
,
1993
; pp.
1797
1799
.
12.
A. A.
Seraphin
,
E.
Werwa
, and
K. D.
Kolenbrander
.
Influence of Nanostructure Size on the Luminescence Behaviour of Silicon Nanoparticle Thin Films
.
J. Mater. Res.
Vol.
12
,
1997
; pp.
3386
3392
.
13.
D. B.
Kao
,
J. P.
McVittie
,
W. D.
Nix
, and
K. C.
Saraswat
.
Two-Dimensional Thermal Oxidation of Silicon. II. Modeling Stress Effects in Wet Oxides
.
IEEE Trans. Electron Devices.
Vol.
35
,
1988
; pp.
25
37
.
14.
H. C.
Le
,
R. W.
Dreyfus
,
W.
Marine
,
M.
Sentis
, and
I. A.
Movtchan
.
Temperature Measurements during Laser Ablation of Si into He, Ar and O2
.
Appl. Surf. Sci.
Vol.
96-98
,
1996
; pp.
164
169
.
15.
V. A.
Kosobukin
,
M. N.
Libenson
, and
A. G.
Rumyantsev
.
Light Excitation of Cylindrical Surface Electromagnetic Waves
.
Opt. Spectrosc.
Vol.
65
,
1988
; pp.
948
951
.
This content is only available via PDF.
You do not currently have access to this content.