The recent emergence of high powered diode laser direct metal deposition (DMD) as an alternative to the more established CO2- and Nd:YAG-powered methods has the potential to make it a generally more energy efficient and industrially accessibly process. Not only does the diode laser itself consume less energy, but the coupling between the incident laser radiation and metallic feed stock, melt pool and solid substrate material is enhanced. The overall effect, however, is not a simple increase of efficiency, but a redistribution of the input process energy, and resulting changes in the major dependent process variables. In this work, coaxial DMD systems using these three main laser types are modelled analytically in terms of energy balances. Novel modelling methods and empirical matching to experimental results are used to derive a series of equations, from which the power distribution, pool length and mean pool temperature can be derived for different initial laser powers and properties. The model is applied to a real system and predicts results in good agreement with experimental values. The model highlights reflection from the melt pool and conduction to the substrate as the major energy distribution pathways. The differences in melt pool geometry and temperature obtained with the different lasers are significant and explain the higher build rates and high thermal load on the substrate found when using a high power diode laser (HPDL).

1.
Miller
,
J. L.
,
Grote
,
K-H.
,
Solid Freeform Manufacturing technologies as an important step in the product development process
,
Computers in Industry
,
28
(
1
):
1995
; pp.
11
16
.
2.
Lewis
,
G. K.
,
Schlienger
,
E.
,
Practical considerations and capabilities for laser assisted direct metal deposition
,
Materials and Design
,
21
(
4
):
2000
; pp.
417
423
.
3.
Backes
,
G.
,
Kreutz
,
E. W.
,
Gasser
,
A.
,
Hoffmann
,
E.
,
Ketgen
,
S.
,
Wissenbach
,
K.
,
Poprawe
,
R.
,
Laser-shape reconditioning and manufacturing of tools and machine parts
,
Proc. ICALEO ‘98
,
Orlando, FL USA
, Vol.
E
:
1998
; pp.
48
56
.
4.
Milewski
,
J. O.
,
Dickerson
,
P. G.
,
Nemec
,
R. B.
,
Lewis
,
G. K.
and
Fonseca
,
J. C.
,
Application of a manufacturing model for the optimization of additive processing of Inconel alloy 690
,
J Materials Processing Technology
,
91
(
1-3
):
1999
; pp.
18
28
.
5.
Mazumder
,
J.
,
Choi
,
J.
,
Nagarathnam
,
K.
,
Koch
,
J.
and
Hetzner
,
D.
,
Direct metal deposition of H13 tool steel for 3-D components
,
JOM
,
49
(
5
):
1997
; pp.
55
60
.
6.
Pantsar
,
H.
,
Kujanpaa
,
V.
,
The absorption of a diode laser beam in laser surface hardening of a low alloy steel
,
Proc. ICALEO ’02
,
Scottsdale AZ
, Section B:
2002
.
7.
Zediker
,
M. S.
,
Direct diode laser competes with Nd:YAG and CO2
,
Industrial Laser Review
, Vol.
27
(
5
):
1993
, pp.
17
.
8.
Nuvonyx Inc
., from URL http://www.nuvonyx.com/index.html: accessed May 2003
9.
Bachmann
,
F.
,
Industrial applications of high power diode lasers in materials processing
,
Applied Surface Science
Vol.
9582
:
2003
; pp.
1
12
.
10.
Wilson
,
J.
,
Hawkes
,
J. F. B.
,
Lasers Principles and Applications
,
Pub. Prentice Hall
:
1987
, pp.
167
11.
Bloes
,
W.
,
Grunenvald
,
B.
,
Dausinger
,
F.
Hugel
,
H
,
Recent progress in laser surface treatment: I. Implications of laser wavelength
,
Journal of Laser Applications
, Vol.
8
:
1996
; pp.
15
23
.
12.
Lawrence
,
J.
,
The characteristics and feasibility of a two-stage ceramic tile grout sealing process using a high power diode laser
, PhD Thesis,
UMIST Manchester
UK
:
1999
; pp.
49
.
13.
Klocke
,
F.
,
Demmer
,
A.
,
Zaboklicki
,
A.
,
Investigation into the use of high power diode lasers for hardening and thermal conduction welding of metals
,
Proc. of SPIE
, Vol.
3097
:
1997
; pp.
592
599
.
14.
Nowotny
,
S.
,
Richter
,
A.
,
Beyer
,
E.
,
Laser cladding using high-power diode lasers
,
Proc. ICALEO ’98
,
Orlando, FL
, Section G:
1998
; pp.
68
74
.
15.
Tuominen
,
J.
,
Laurila
,
J.
,
Vihinen
,
J.
,
Mantyla
,
T.
,
Olaussen
,
L
,.
Peltola
,
T
,
Comparison of CO2 and High Power Diode Laser (HPDL) Cladding
,
Proc. ICALEO ’02
,
Scottsdale AZ
, Section B:
2002
.
16.
Hayhurst
,
P.
,
Tuominen
,
J.
,
Vuoristo
,
P.
,
Mantyla
,
T.
,
Coaxial laser cladding nozzle for use with a high power diode laser
,
Proc. ICALEO ’02
,
Scottsdale AZ
, Section B:
2002
.
17.
Barnes
,
S.
,
Timms
,
N.
,
Bryden
,
B.
,
Pashby
,
I.
,
High power diode laser cladding
,
Journal of Materials Processing Technology
Vol.
6664
:
2003
; pp.
1
6
.
18.
Dykhuizen
,
R. C.
,
Dobranich
,
D.
,
Scaling analysis for the LENS process
,
Sandia National Laboratories Internal Report
:
1998a
.
19.
Dykhuizen
,
R. C.
,
Dobranich
,
D.
,
Scoping thermal calculations for the LENS process
,
Sandia National Laboratories Internal Report
:
1998b
.
20.
Hofmeister
,
W.
,
Griffith
,
M.
,
Ensz
,
M.
,
Smugeresky
,
J.
,
Solidification in direct metal deposition by LENS processing
,
JOM
, Vol.
53
(
9
):
2001
; pp.
30
34
.
21.
Gedda
H.
,
Powell
J.
,
Wahlstrom
G.
,
Li
W.-B
,
Engstrom
H.
,
Magnusson
C.
,
Energy redistribution during CO2 laser cladding
,
Journal of Laser Applications
,
14
(
2
):
2002
; pp.
78
82
.
22.
Pinkerton
,
A. J.
,
Li
,
L.
,
Modelling powder concentration distribution from a coaxial deposition nozzle for laser-based rapid tooling
, Transactions of the ASME,
Journal of Manufacturing Science and Engineering
:
2003
, In press.
23.
Li
,
W.-B.
,
Engstrom
,
H.
,
Powell
,
J.
,
Tan
,
Z.
,
Magnusson
,
C.
,
Redistribution of the beam power in laser cladding by powder injection
,
Lasers in Engineering
, Vol.
5
(
3
):
1996
; pp.
175
183
.
24.
Kizaki
,
Y.
,
Azuma
,
H.
,
Yamazaki
,
S.
,
Sugimoto
,
H
,
Takagi
,
S
,
Phenomenological studies in laser cladding. Part 1. Time-resolved measurements of the absorptivity of metal powder
,
Japanese Journal of Applied Physics
, Vol.
32
:
1993
; pp.
205
212
25.
Lin
,
J.
,
Temperature analysis of the powder streams in coaxial laser cladding
,
Optics & Laser Technology
,
31
:
1999
; pp.
565
570
.
26.
Diniz
Neto
, O. O.,
Vilar
,
R.
,
Interaction between the laser beam and the powder jet in blown powder laser alloying and cladding
,
Proc. ICALEO ’98
, Vol.
D
:
1998
; pp.
180
188
.
27.
Meriaudeau
,
F.
,
Dumont
,
C.
,
Aluze
,
D.
,
Truchetet
,
F.
,
Investigation of the particle speed using image processing for the laser cladding process
’,
Proc. SPIE
, Vol.
3101
:
1997
; pp.
211
220
.
28.
Mimatsu
,
J.
,
Bos
,
J. A.
,
Kannatey-Asibu
Jr,
E.
,
Chen
,
M. M.
,
Determination of energy absorption during laser welding by an iterative conduction method
,
Journal of Laser Applications
, Vil.
7
:
1995
; pp.
162
168
.
29.
Yevko
,
V.
,
Park
,
C. B.
,
Zak
,
G.
,
Coyle
,
T. W.
,
Benhabib
,
B.
,
Cladding formation in laser-beam fusion of metal powder
,
Rapid Prototyping Journal
, Vol.
4
(
4
):
1998
;
168
184
.
30.
Colaco
,
R.
,
Costa
,
L.
,
Guerra
,
R.
,
Vilar
,
R.
,
A simple correlation between the geometry of laser cladding tracks and process parameters
,
Proc. NATO Advanced Study Institute on Laser Processing: Surface Treatment and Film Deposition
,
Sesimbra, Portugal
,
J.
Mazumder
et al (ed):
1994
; pp.
421
429
.
31.
Beuth
,
J.
,
Klingbeil
,
N.
,
The role of process variables in laser-based direct metal solid freeform fabrication
,
JOM
, Vol.
53
(
9
):
2001
; pp.
36
39
.
32.
Kar
,
A.
,
Mazumder
,
J.
,
One-dimensional diffusion model for extended solid solution in laser cladding
,
Journal of Applied Physics
, Vol.
61
(
7
):
1987
;
2645
2655
.
33.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Fundamentals of Heat and Mass Transfer
, 5th Ed.,
New York
:
John Wiley & Sons
,
2002
: Appendix C pp.
939
945
.
34.
Rosenthal
,
D.
,
The theory of moving sources of heat and its application to metal treatments
,
Transactions of the American Society of Mineral Engineers
, Vol.
68
:
1946
; pp.
849
866
.
35.
Griffith
,
M. L.
,
Schlienger
,
M. E.
,
Harwell
,
L. D.
,
Oliver
,
M. S.
,
Baldwin
,
M. D.
,
Ensz
,
M. T.
,
Essien
,
M.
,
Brooks
,
J.
,
Robino
,
C. V.
,
Smugeresky
,
J. E.
,
Hofmeister
,
W. H.
,
Wert
,
M. J.
,
Nelson
,
D. V.
,
Understanding thermal behaviour in the LENS process
,
Materials and Design
, Vol.
20
(
2
):
1999
; pp.
107
113
.
36.
Hofmeister
,
W. H.
,
MacCallum
,
D. O.
,
Knorovsky
,
G. A.
,
video monitoring and control of the LENS process
,
Proceedings of the 9th International Conference on Computer Technology in Welding
,
Detroit, MI
,
1999
. pp.
187
196
.
37.
Vasinonta
,
A.
,
Beuth
,
J.
,
Griffith
,
M.
,
Process maps for laser deposition of thin-walled structures
,
Proceedings of the 10th Solid Freeform Fabrication Symposium
,
University of Texas
,
Austin, USA
:
1999
; pp.
383
391
.
38.
Pinkerton
,
A. J.
,
Li
,
L.
,
Rapid prototyping using direct laser deposition-the effect of powder atomisation type and flowrate
, Proc. I.Mech.E. Part B,
Journal of Engineering Manufacture
, Vol.
217
:
2003
; pp.
741
752
.
39.
Hoffmeister
,
W.
,
Wert
,
M.
,
Smugeresky
,
J.
,
Philliber
,
J. A.
,
Griffith
,
M.
,
Ensz
,
M.
,
Investigating solidification with the laser-engineered net shaping (LENS) process
,
JOM
51
(
7
):
1999
. Accessed via JOM-e, http://www.tms.org/pubs/journals/JOM/9907/Hoffmeister/Hoffmeister-9907.html, Dec. 2002.
40.
ASM International
,
ASME Metals Handbook
, 9th Ed., Vol.
3
.:
1990
.
This content is only available via PDF.
You do not currently have access to this content.