Dual-beam laser welding has been used to weld thick-section metals and for increasing keyhole stability leading to a better weld quality. So far, the development of dual-beam laser welding technologies has been in the experimental stage.

The objective of this paper is to develop mathematical models and the associated numerical techniques to calculate the transient heat transfer and fluid flow in the weld pool and to study weld pool dynamics during the dual-beam laser welding process. The simulation was conducted for a three-dimensional stationary dual-beam laser welding. The predicted changes of weld pool shape from an oval-like shape with a long-axis connecting the two lasers to another oval-like shape with a short-axis connecting the two lasers are similar to those observed from experiments. This interesting dynamical shape of the weld pool can be well explained by the predicted fluid flow field. Parametric studies were also conducted to investigate the effect of beam distance between the two lasers on the dynamical shape of the weld pool. Computer animations showing the transient fluid flow and weld pool dynamics will be presented.

1.
F.
Coste
,
F.
Janin
,
L.
Jones
,
R.
Fabbro
,
Laser welding using Nd:Yag lasers up to 12 kW application to high thickness welding
,
ICALEO
2002
.
2.
F.
Coste
,
F.
Janin
,
M.
Hamadou
and
R.
Fabbro
,
Deep penetration laser welding with Nd:Yag lasers combination up to 11kw laser power
,
LAMP
2002
.
3.
T.
Nakabayashi
,
F.
Wani
,
H.
Okado
,
A.
Hayakawa
,
S.
Suzuki
and
K.
Yasuda
,
Laser welding characteristics with high power combing beam
,
ICALEO
,
2001
, Section A.
4.
J.
Xie
,
Dual beam laser welding
,
Welding J.
, October,
2002
, pp.
223s
230s
.
5.
J.
Xie
,
Weld morphology and thermal modeling in dual-beam laser welding
,
Welding J.
, December,
2002
, pp.
283s
290s
.
6.
W.
Gref
,
B.
Hohenberger
,
F.
Dausinger
and
H.
Hügel
,
Energy coupling and process efficiency in double-focus welding with Nd:YAG
,
ICALEO
2002
.
7.
M.
Grupp
,
T.
Seefeld
,
G.
Sepold
,
Laser beam welding of aluminum alloys with diode pumped Nd:YAG lasers
,
ICALEO
,
2001
.
8.
T.
Iwase
,
K.
Shibata
,
H.
Sakamoto
,
F.
Dausinger
,
B.
Hohenberger
,
M.
Muller
,
A.
Matsunawa
and
N.
Seto
,
Real time X-ray observation of dual focus beam welding of aluminum alloys
,
ICALEO
,
2000
, Section C, pp.
26
34
.
9.
R.
Fabbro
,
Basic processes in deep penetration laser welding
,
ICALEO
,
2002
.
10.
H.
Schwede
,
R.
Kramer
,
K.
Hänsel
,
M.
Klos
,
Multi spot laser beam processing, Fundamentals. Applications. Diagnostics. Quality assessment
,
ICALEO
,
2001
.
11.
R.
Fabbro
and
K.
Chouf
,
Keyhole modeling during laser welding
,
J. Appl. Phys.
,
87
(
2000
), pp.
4075
4083
.
12.
V. V.
Semak
,
J.A.
Hopkins
,
M.H.
McCay
and
T.D.
McCay
,
A concept for a hydrodynamic model of keyhole formation and support during laser welding
,
ICALEO
,
1994
, pp.
641
650
.
13.
V. V.
Semak
,
W. D.
Bragg
,
B.
Damkroger
and
S.
Kempka
,
Transient model for the keyhole during laser welding
,
J. Phys. D: Appl. Phys.
,
32
(
1999
), pp.
L61
L64
.
14.
V. V.
Semak
,
J. A.
Hopkins
,
M. H.
McCay
and
T. D.
McCay
,
Melt pool dynamics during laser welding
,
J. Phys. D: Appl. Phys.
,
28
(
1995
), pp.
2443
2450
.
15.
A.
Matsunawa
,
J.
Kim
,
N.
Seto
,
M.
Mizutani
and
S.
Katayama
,
Dynamics of keyhole and molten pool in laser welding
,
Journal of Laser Applications
, Vol.
10
, Number
6
,
1998
, pp.
247
254
.
16.
W.
Sudnik
,
D.
Rada
,
S.
Breitschwerdt
and
W.
Erofeew
,
Numerical simulation of weld pool geometry in laser beam welding
,
J. Phys. D: Appl. Phys.
33
(
2000
), pp.
662
671
.
17.
D. F.
Farson
and
K. R.
Kim
,
Simulation of laser evaporation and plume
,
ICALEO
,
1998
, section F, pp.
197
206
.
18.
A.
Kar
and
J.
Mazumder
,
Mathematical modeling of key-hole laser welding
,
J. Appl. Phys.
,
78
(
1995
), pp.
6353
6360
.
19.
K.
Takeshita
and
A.
Matsunawa
,
Numerical simulation of the molten-pool formation during the laser surface-melting process
,
Metall. And Mat. Trans.
, Vol.
32B
,
2001
, pp.
949
959
.
20.
H.
Ki
,
P. S.
Mohanty
and
J.
Mazumder
,
Modeling of high-density laser-material interaction using fast level set method
,
J. Phys. D: Appl. Phys.
,
34
(
2001
), pp.
364
372
.
21.
H.
Ki
,
P. S.
Mohanty
and
J.
Mazumder
,
Modeling of high-density laser-material interaction using fast level set method
,
J. Phys. D: Appl. Phys.
,
34
(
2001
), pp.
364
372
.
22.
A.
Kaplan
,
A model of deep penetration laser welding based on calculation of the keyhole profile
,
J. Phys. D: Appl. Phys.
,
27
(
1994
), pp.
1805
1814
.
23.
T. C.
Chen
and
E.
Kannatey-Asibu
, Jr.
Convection pattern and weld pool shape during conduction-mode dual beam laser welding
,
North American Manufacturing Research Conference
, 24th --
1996
May :
Ann Arbor; MI
, pp.
259
264
.
24.
C. A.
Hou
,
Finite element simulation of dual-beam laser welding using ANSYS
,
IASTE
,
1994
, May:
Pittsburgh, PA
, pp.
430
433
.
25.
E.
Capello
,
P.
Chiarello
,
E.
Piccione
and
B.
Previtali
,
Analysis of high power CO2 dual beam laser welding, Advanced manufacturing systems and technology
,
Courses and Lectures-International Center for Mechanical Sciences
,
2002
; NO
437
.
26.
K.C.
Chiang
and
H.L.
Tsai
,
Shrinkage-induced fluid flow and domain change in two-dimensional alloy solidification
,
Int. J. Heat Mass Transfer
35
(
1992
)
1763
1769
.
27.
D.B.
Kothe
,
R.C.
Mjolsness
and
M.D.
Torrey
, Ripple: A computer program for incompressible flows with free surfaces,
LA-12007-MS
,
Los Alamos National Laboratory
,
1991
.
28.
J.
Xie
and
A.
Kar
,
Mathematical modeling of melting during laser materials processing
,
J. Appl. Phys.
81
,
3015
(
1997
).
29.
W.
Sudnik
,
D.
Radaj
,
S.
Breitschwerdt
and
W.
Erofeew
,
Numerical simulation of weld pool geometry in laser beam welding
,
J. Phys. D: Appl. Phys.
33
(
2000
), pp.
662
671
.
30.
J.
Hu
,
Modeling the transport phenomena during dual-beam laser welding process
, Ph.D. Dissertation,
University of Missouri-Rolla
, December
2003
.
This content is only available via PDF.
You do not currently have access to this content.