Full penetration laser welding of thick steel plates has been carried out using a 20 kW CO2 laser facility. Dynamic keyhole behaviour has been observed using an x-ray transmission imaging system to elucidate the formation mechanism of the porosity and hot cracking for various welding conditions. Relatively wide optimum power range to prevent the porosity can be attained when the back surface is shielded by the inert gas. However, the convex shaped weld cross-section, which is susceptible to hot cracking, is formed due to significant perturbation of the keyhole caused by the back shielding gas flow. The keyhole is stabilised without using the back shielding. However, large porosities are likely to occur near the bottom surface, since the plasma formed just below the keyhole supplies monatomic nitrogen, which can easily dissolves into the molten pool. Supersaturated nitrogen forms bubbles in the molten pool during welding and causes the porosities. A small amount of aluminium addition in the base metal is effective to prevent this type of porosity due to denitrification effect of aluminium.

1.
Hayashi
,
T.
,
Inaba
,
Y.
,
Matsuhiro
,
Y.
,
Yamada
T.
&
T.
Kudo
.
Development of High Power Laser Welding Process for Pipe
.
Proc. ICALEO’96.
Vol.
81
: October,
1996
;
D132
140
.
2.
Ono
,
M.
,
Shiozaki
,
T.
,
Shinbo
,
Y.
,
Sekine
,
Y.
,
Iwasaki
K.
&
M.
Takahashi
.
Development of High Power Laser Pipe Welding Process
.
Quarterly J. JapanWelding Society.
Vol.
19
:
2001
;
233
240
.
3.
K.
Minamida
.
High Power Laser Applications in Nippon Steel Corporation
.
Proc. of SPIE.
Vol.
4831
,
1st Intel. Symp. on High-Power Laser Macroprocessing
. edited by
I.
Miyamoto
,
K.F.
Kobayashi
,
K.
Sugioka
,
R.
Poprawe
&
H.
Helvajian
: May
2002
;
402
410
.
4.
Tsubota
,
S.
,
Ishide
,
T.
,
Nayama
,
M.
,
Shimokusu
,
Y.
&
S.
Fukumoto
.
Development of 10 kW class Laser Welding Technology
.
Proc. ICALEO 2000.
Vol.
89
: October,
2000
;
C219
225
.
5.
Roland
,
F.
,
Reinert
,
T.
&
G.
Pethan
.
Laser Welding in Shipbuilding –an Overview of the Activities at Meyer Werft
.
Proc. IIW Intel. Conf.
:
2002
.
6.
Dahmen
,
M.
,
Coste
,
F.
,
Knapp
W.
&
G.
Kapper
.
Multiple Pass Laser Beam Welding of Heavy Sections
.
Proc. ICALEO’99.
Vol.
87
: November,
1999
;
D147156
.
7.
Ono
,
K.
,
Adachi
,
K.
&
I.
Miyamoto
.
Weldability of mild steel with oxide film in high power CO2 laser welding
.
Proc. of SPIE.
Vol.
4831
,
1st Intel. Symp. on High-Power Laser Macroprocessing
. edited by
I.
Miyamoto
,
K.F.
Kobayashi
,
K.
Sugioka
,
R.
Poprawe
&
H.
Helvajian
: May
2002
;
411
415
.
8.
Tsukamoto
,
S.
,
Kawaguchi
,
I.
,
Arakane
,
G.
&
H.
Honda
.
Suppression of Porosity using Pulse Modulation of Laser Power in 20 kW CO2 Laser Welding
,.
Proc. ICALEO 2001
: October,
2001
;
D607
615
.
9.
Tsukamoto
,
S.
,
Kawaguchi
,
I.
,
Arakane
,
G.
&
H.
Honda
.
Keyhole Behaviour in High Power Laser Welding
.
Proc. of SPIE.
Vol.
4831
,
1st Intel. Symp. on High-Power Laser Macroprocessing
. edited by
I.
Miyamoto
,
K.F.
Kobayashi
,
K.
Sugioka
,
R.
Poprawe
&
H.
Helvajian
: May
2002
;
251
256
.
10.
Kawaguchi
,
I.
,
Tsukamoto
,
S.
,
Arakane
,
G.
&
H.
Honda
.
Power Modulation in Deep Penetration Laser welding – Optimisation of Frequency And Waveform to Prevent the Porosity -
.
Proc. ICALEO 2003
: October,
2003
; No.
1006
.
11.
Matsunawa
,
A.
,
Kim
,
J. D.
,
Seto
,
N.
,
Mizutani
,
M.
&
S.
Katayama
.
Dynamics of keyhole and molten pool in laser welding
.
J. Laser Applications.
Vol.
10
: December.
1998
;
247
254
.
12.
Ohno
,
S.
and
Uda
,
M.
Effect of hydrogen and nitrogen on blowhole formation in pure nickel at arc welding and non-arc melting
.
Trans. Nat. Res. Inst. Met.
Vol.
23
:
1981
;
243
248
.
13.
Uda
,
M.
and
Ohno
,
S.
Spattering phenomenon for iron-nitrogen system during arc melting
.
Trans. Nat. Res. Inst. Met.
Vol.
20
:
1978
;
358
365
.
14.
den Ouden
,
G.
and
Griebling
O.
Nitrogen absorption during arc welding
.
International Trends in Welding Science and Technology.
eds.
S.A.
David
and
J.M.
Vitek
:
1990
;
431
435
.
15.
Kuwana
,
T.
and
Kokawa
,
H.
The Nitrogen Absorption of Iron Weld Metal in Pressurised Welding Atmosphere
.
Trans. Jap. Weld. Soc.
Vo.
18
:
1987
;
12
18
.
16.
Palmer
,
T. A.
and
DebRoy
,
T.
Enhanced dissolution of nitrogen during gas tungsten arc welding of steels
.
Sci. Technol. Weld. Joining.
Vol.
3
:
1998
;
190
203
.
17.
Dong
,
W.
,
Kokawa
,
H.
Satoh
,
Y.
and
S.
Tsukamoto
.
Nitrogen Absorption by Iron and Stainless Steels during CO2 Laser Welding
.
Metall. Mater. Trans. B.
Vol.
34B
:
2003
;
75
82
.
18.
Dong
,
W.
, Kokawa,
H.
Satoh
, Y. and
S.
Tsukamoto
.
Mechanism Governing Nitrogen Absorption by Steel Weld Metal during Laser Welding
.
submitted to Metall. Mater. Trans. B.
19.
Tsukamoto
,
S.
and
Irie
,
H.
Welding defects and molten metal behaviour in low speed electron beam welsding
.
Welding in the World.
Vol.
23
:
1985
;
130
140
.
20.
Irie
,
H.
and
Tsukamoto
,
S.
Formation Mechanism of Longitudinal Crack in Electron Beam welding
.
Trans. Nat. Res. Inst. Met.
Vol.
32
:
1990
;
6
14
.
This content is only available via PDF.
You do not currently have access to this content.