In this article, a recurrent neural network is applied to dynamic modeling of the laser cladding by powder injection. The recurrent neural network takes into account table velocity, laser pulse energy, laser pulse frequency, and laser pulse width as the input parameters, and the clad height and rate of solidification as the outputs. A large set of data obtained from experimental studies with different settings is fed to the network for training. The backpropagation through time method is used to train the network. Unseen data in the training process are used for verification. Results are promising and show that the identified model is able to predict the nature of the laser cladding process in both transient and steady state responses.

1.
W.
Steen
,
Laser Material Processing
,
Springer
,
1998
.
2.
G.
Romer
,
J.
Meijer
, and
J.
Benneker
,
Surface Engineering
14
,
295
(
1998
).
3.
M.
Bianco
,
C.
Rivela
, and
S.
Talentino
, On-line surface treatment feasibility of industrial components by means of power laser, in
Laser Materials Processing: Industrial and Microelectronics Applications
, edited by
E.
Beyer
et al
, pages
53
61
, SPIE 2207,
1994
.
4.
G.
Bruck
,
Journal of Metals
39
,
10
(
1987
).
5.
M.
Picasso
,
C.
Marsdan
,
J.
Wangniere
,
A.
Frenk
, and
M.
Rappaz
,
Metallurgical and Materials Transactions B
25
,
281
(
1994
).
6.
J.
Jouvard
,
D.
Grevey
,
F.
Lemoine
, and
A.
Vannes
,
Journal of Laser Applications
9
,
43
(
1997
).
7.
J.
Lin
,
Optics and laser Technology
31
,
251
(
1999
).
8.
G.
Romer
and
J.
Meijer
, Analytical model describing the relationship between laser power, beam velocity and melt pool depth in the case of laser remelting, alloying and dispersing, in
Laser in Material processing
, edited by
L.
Beckmann
, pages
507
516
,
Europt 3097
,
1997
.
9.
A.
Kar
and
J.
Mazumder
,
Journal of applied physics
61
,
2645
(
1987
).
10.
E.
Toyserkani
,
A.
Khajpour
, and
S.
Corbin
,
A 3-d transient finite element model for laser cladding by powder injection
, in
Proceeding of the International Congress on Application of Lasers and Electro-optics, ICALEO’ 2002, LIA
,
2002
.
11.
M.
Bambeger
,
W.
Kaplan
,
B.
Medres
, and
L.
Shrprlrva
,
Journal of laser applications
10
,
29
(
1998
).
12.
F.
Bataille
,
J.
Cerez
, and
D.
Kechemair
,
Journal of laser applications
4
,
43
(
1992
).
13.
G.
Romer
,
R.
Aarts
, and
J.
Meijer
,
Lasers in engineering
8
,
251
(
1998
).
14.
E.
Toyserkani
,
A.
Khajpour
, and
S.
Corbin
,
Application of hammerstien-wiener nonlinear model to laser cladding dynamic model prediction
, in
Proceeding of the International conference on modeling and simulation, pages 94—98, IASTED
,
2001
.
15.
E.
Toyserkani
,
A.
Khajepour
, and
S.
Corbin
,
Journal of laser applications
(In press).
16.
J.
Sjoberg
et al,
Automatica
31
,
1691
(
1995
).
17.
P.
Gilgien
and
W.
Kurz
,
Microstructure and phase selection in rapid laser processing), Laser processing surface treatment and film deposition
,
NATO
, Vol.
307
, pp.
77
91
,
1989
.
18.
E.
Toyserkani
,
A.
Khajepour
, and
S.
Corbin
, US patent, (In Progress).
19.
J.
Principe
,
N.
Euliano
, and
W.
Lefebvre
,
Neural and Adaptive Systems
,
John Wiley and Sons
,
2000
.
20.
A.
Parlos
,
O.
Rais
, and
A.
Atiya
,
Neural networks
13
,
756
(
2000
).
21.
O.
Nerrand
,
P.
Roussel
,
D.
Urrbani
,
L.
Personnaz
, and
G.
Drefus
,
IEEE Transactions on Neural Networks
5
,
178
(
1994
).
22.
S.
Das
and
O.
Olurotimi
,
IEEE Transactions on Neural Network on Neural Networks
9
,
913
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.