The widths of the Heat Affected Zone (HAZ) produced by nanosecond and femtosecond laser pulses applied to metals, measured experimentally in recent experiments, are quantified by numerical simulations. The calculations use the finite element technique in the case of a two-temperature model. In both experiments and simulations, the HAZ width is defined by physical metallurgy considerations. This allows to describe the lateral thermal effects induced by laser-metal interaction, and thus to explain the large difference in microdrilling sharpness between nanosecond and femtosecond pulse duration regimes.

The numerical simulations give a HAZ width of 1.71 µm for Cu, 290 nm for Ni, and 220 nm for Al after femtosecond pulses. In the nanosecond case, the HAZ width becomes 8.34µm for Cu, 1.64µm for Ni, and 3.15µm for Al. This outlines the difference between the HAZ produced by these two pulse duration regimes (a 6-times to 23-times factor is obtained).

Experimental results obtained on Al samples are finally compared with the numerical results. A reasonable agreement is obtained. This validates the use of a two-temperature model to represent the laser-metal interaction in ultra-short pulse duration regimes.

1.
X.
Zhu
.
Applied Surface Science
.
A New Method for Determining Critical Pulse Width in Laser Material Processing.
Vol.
167
:
2000
; pp.
230
242
.
2.
C.
Momma
,
B.N.
Chichkov
,
S.
Nolte
,
F.
von Alvensleben
,
A.
Tünnermann
,
H.
Welling
and
B.
Wellegehausen
.
Short-pulse Laser Ablation of Solide Targets
.
Optics Communications
. Vol.
129
:
1996
; pp.
134
142
.
3.
B. N.
Chichkov
,
C.
Momma
and
A.
Tünnermann
.
Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids
.
Applied Physics A.
Vol.
63
:
1996
.
4.
S.
Nolte
,
C.
Momma
,
H.
Jacobs
,
A.
Tünnermann
,
B. N.
Chichkov
,
B.
Wellegehausen
and
H.
Welling
.
Ablation of Metals by Ultrashort Laser Pulses
.
Journal of the American Optical Society B.
Vol.
14
: October,
1997
.
5.
P.B.
Corkum
,
F.
Brunel
,
N. K.
Sherman
and
T.
Srinavasan-Rao
.
Thermal Response of Metals to Ultrashort Laser Excitation
.
Physical Review Letters.
Vol.
61
: December,
1988
; pp.
2886
2889
.
6.
M. I.
Kaganov
,
I. M.
Lifshitz
and
L. V.
Tanatarov
.
Relaxation between Electrons and the Crystalline Lattice
.
Soviet Physics, JETP.
Vol.
4
:
1957
; pp.
173
178
.
7.
S.I.
Anisimov
,
B.L.
Kapeliovich
and
T. L.
Perel’man
.
Electron Emission from Metal Surfaces Exposed to ultrashort Laser Pulses
.
Soviet Physics, JETP.
Vol.
39
:
1974
; pp.
375
377
.
8.
J. D.
Verhoeven
,
Fundamentals of Physical Metallurgy, Wiley
,
1975
.
9.
P.
Haasen
, Physical Metallurgy, Third Edition,
Cambridge University Press
,
1996
.
10.
R.
Le Harzic
,
S.
Valette
,
N.
Huot
,
R.
Fortunier
,
E.
Audouard
and
P.
Laporte
.
Comparison of Heat Affected Zones due to Nanosecond and Femtosecond Laser Pulses Using Transmission Electronic Microscopy
.
Applied Physics Letters.
Vol.
80
:
2002
; pp.
3886
3888
.
11.
N. W.
Ashcroft
and
N. D.
Mermin
, Solid state physics,
Cornell University
,
1976
.
12.
C.
Kittel
, Introduction to solid state physics,
New York
,
John Wiley & sons Inc.
,
1976
.
13.
S.-S
Wellershoff
,
J.
Hohlfeld
,
J.
Güdde
and
E.
Matthias
.
The Role of Electron-phonon Coupling in Femtosecond Laser Damage of Metals
.
Applied Physics A.
Vol.
69
:
1999
; pp.
99
107
.
14.
N.K.
Sherman
,
F.
Brunel
and
P.B.
Corkum
.
Transient Response of Metals to Ultrashort Pulse Excitation
.
Optical engineering.
Vol.
28
:
1989
; pp.
1114
.
15.
A.P.
Kanavin
,
I.V.
Smetanin
,
V. A.
Isakov
,
Yu. V.
Afanasiev
,
B. N.
Chichkov
,
B.
Wellegehausen
,
S.
Nolte
,
C.
Momma
and
A.
Tunnermann
.
Physical Review B.
Vol.
57
:
1998
; pp.
14698
14703
.
16.
O.
Pironneau
,
D.
Bernardi
,
F.
Hecht
,
K.
Ohtsuka
: FREEFEM+, ftp://ftp.ann.jussieu.fr/pub/soft/pironneau
This content is only available via PDF.
You do not currently have access to this content.