This paper describes a real time laser weld monitoring system based on detection of laser weld optical emissions in the UV, visible and IR wavelength ranges. These three signals are examined using chromatic analysis, and threshold tests are applied to various chromatic parameters to identify unacceptable weld quality.

Classical chromatic analysis is the quantitative description of a color in terms of the amounts of “primary” colors that must be mixed to produce the desired color. For laser welding analysis, we extend this concept to consider UV, visible, and near IR wavelengths. The weld “color” is determined by the proportion of UV, visible, and IR light observed in the weld emission. Trichromatic coordinates can be defined as follows:

  • X = IR/(UV + Visible + IR),

  • Y = Visible/(UV + Visible + IR),

  • Z = UV/(UV + Visible + IR)

Any two of these values can be used to quantify the “color” of the weld. By plotting, for example, X versus Y as the weld proceeds with time, any changes in weld “color” may be observed. A stable welding process produces near constant trichromatic values. Any significant change (transient or long term) in the trichromatic coordinates indicates an anomaly in the weld.

1.
Y-L.
Mao
,
G.
Kinsman
,
W.W.
Duley
, (
1993
), “
Real-Time Fast Fourier transform Analysis of Acoustic Emission During CO2 Laser Welding of Materials
”,
J. Laser Applications
5
No.
2&3
, pp
17
22
.
2.
H.
Gu
,
W.W.
Duley
, (
1996
), “
Resonant acoustic emission during laser welding of metals
”,
J. Phys. D: Appl. Phys.
29
, pp
550
555
.
3.
D.
Farson
,
K.
Hillsley
,
J.
Sames
,
R.
Young
, (
1994
), “
Frequency-Time Characteristics of Air-Borne Signals from Laser Welds
”,
Proc. ICALEO’94, Laser Institute of America
,
Orlando
, pp
86
94
.
4.
G.
Kinsman
,
W.W.
Duley
, (
1993
), “
Fuzzy Logic Control of CO2 Laser Welding
”,
Proc. ICALEO’93, Laser Institute of America
,
Orlando
, pp
160
.
5.
H.B.
Chen
,
L.
Li
,
D.J.
Brookfield
,
K.
Williams
,
W. M.
Steen
, (
1991
), “
Laser Process Monitoring with Dual Wavelength Optical Sensors
”,
Proc. ICALEO’91, Laser Institute of America
,
Orlando
, ppl
13
122
.
6.
P.G.
Sanders
,
K.H.
Leong
,
J.S.
Keske
,
G.
Kornecki
, (
1998
), “
Real-time monitoring of laser beam welding using infrared weld emissions
”,
J. Laser Applications
10
(
5
), pp.
205
211
.
7.
E.
Beyer
,
P.
Abels
, (
1993
), “
Process monitoring in laser materials processing
”,
Industrial Laser Review
,
December 1993
, pp.
9
13
.
8.
T.J.
Rockstroh
,
J.
Mazumder
, (
1987
), “
Spectroscopic studies of plasma during CW laser material interaction
”,
J. Appl. Phys.
61
(
3
), pp.
917
923
.
9.
R.E.
Mueller
,
H.
Gu
,
N.
Ferguson
,
M.
Ogmen
,
W.W.
Duley
, (
1998
), “
Real Time Optical Spectral Monitoring of Laser Welding Plumes
”,
Proc. ICALEO’98
,
Orlando
,
November 1998
,
Laser Institute of America
.
10.
F.W
Sears
, (
1958
),
OPTICS
, 3rd Ed.,
Addison-Wesley
,
Reading MA
, Ch. 14.
11.
J.M.
Lee
,
K.G.
Watkins
,
W.M.
Steen
,
P.C.
Russell
,
G.R.
Jones
, (
1999
), “
Chromatic modulation based acoustic analysis technique for in-process monitoring of laser materials processing
”,
J. Laser Applications
11
(
5
), pp.
199
205
.
12.
J.M.
Lee
,
K.G.
Watkins
,
W.M.
Steen
, (
2001
), “
In-process chromatic monitoring in the laser cleaning of marble
”,
J. Laser Applications
13
(
1
), pp.
19
25
.
This content is only available via PDF.
You do not currently have access to this content.