In the current aera of rapid development in the field of electric vehicles and electrochemical energy storage, solid-state battery technology is attracting much research and attention. Solid-state electrolytes, as the key component of next-generation battery technology, are favored for their high safety, high energy density, and long life. However, finding high-performance solid-state electrolytes is the primary challenge for solid-state battery applications. Focusing on inorganic solid-state electrolytes, this work highlights the need for ideal solid-state electrolytes to have low electronic conductivity, good thermal stability, and structural and phase stability. Traditional experimental and theoretical computational methods suffer from inefficiency, thus machine learning methods become a novel path to intelligently predict material properties by analyzing a large number of inorganic structural properties and characteristics. Through the gradient descent-based XGBoost algorithm, we successfully predicted the energy band structure and stability of the materials, and screened out only 194 ideal solid-state electrolyte structures from more than 6000 structures that satisfy the requirements of low electronic conductivity and stability simultaneously, which greatly accelerated the development of solid-state batteries.

[1]
S.
Hameer
and
J. L.
Van Niekerk
,
Int. J. Energy Res.
39
,
1179
(
2015
).
[2]
C.
Li
,
Z. Y.
Wang
,
Z. J.
He
,
Y. J.
Li
,
J.
Mao
,
K. H.
Dai
,
C.
Yan
, and
J. C.
Zheng
,
Sustain. Mater. Technol.
29
,
e00297
(
2021
).
[3]
R. S.
Chen
,
Q. H.
Li
,
X. Q.
Yu
,
L. Q.
Chen
, and
H.
Li
,
Chem. Rev.
120
,
6820
(
2020
).
[4]
Q.
Zhao
,
S.
Stalin
,
C. Z.
Zhao
, and
L. A.
Archer
,
Nat. Rev. Mater.
5
,
229
(
2020
).
[5]
M. A.
Rahman
,
X. J.
Wang
, and
C. E.
Wen
,
J. Electrochem. Soc.
160
,
A1759
(
2013
).
[6]
T.
Placke
,
R.
Kloepsch
,
S.
Dühnen
, and
M.
Winter
,
J. Solid State Electrochem.
21
,
1939
(
2017
).
[7]
P.
Lazzarin
,
F.
Berto
,
F. J.
Gomez
, and
M.
Zappalorto
,
Int. J. Fatigue
30
,
1345
(
2008
).
[8]
A.
Manthiram
,
X. W.
Yu
, and
S. F.
Wang
,
Nat. Rev. Mater.
2
,
16103
(
2017
).
[10]
F.
Wu
,
K.
Zhang
,
Y. R.
Liu
,
H. C.
Gao
,
Y.
Bai
,
X. R.
Wang
, and
C.
Wu
,
Energy Storage Mater.
33
,
26
(
2020
).
[11]
X. Y.
Liu
,
X. R.
Li
,
H. X.
Li
, and
H. B.
Wu
,
Chem. Eur. J.
24
,
18293
(
2018
).
[12]
A.
Sakuda
,
A.
Hayashi
, and
M.
Tatsumisago
,
Sci. Rep.
3
,
2261
(
2013
).
[13]
W. W.
Ping
,
C. W.
Wang
,
R. L.
Wang
,
Q.
Dong
,
Z. W.
Lin
,
A. H.
Brozena
,
J. Q.
Dai
,
J.
Luo
, and
L. B.
Hu
,
Sci. Adv.
6
,
eabc8641
(
2020
).
[14]
F. D.
Han
,
A. S.
Westover
,
J.
Yue
,
X. L.
Fan
,
F.
Wang
,
M. F.
Chi
,
D. N.
Leonard
,
N. J.
Dudney
,
H.
Wang
, and
C. S.
Wang
,
Nat. Energy
4
,
187
(
2019
).
[15]
Y.
Zhang
,
X. F.
He
,
Z. Q.
Chen
,
Q.
Bai
,
A. M.
Nolan
,
C. A.
Roberts
,
D.
Banerjee
,
T.
Matsunaga
,
Y. F.
Mo
, and
C.
Ling
,
Nat. Commun.
10
,
5260
(
2019
).
[16]
J.
Neugebauer
and
C. G.
Van de Walle
,
Phys. Rev. B
51
,
10568
(
1995
).
[17]
M.
Asta
,
D.
De Fontaine
,
M.
Van Schilfgaarde
,
M.
Sluiter
, and
M.
Methfessel
,
Phys. Rev. B
46
,
5055
(
1992
).
[18]
G.
Hautier
,
S. P.
Ong
,
A.
Jain
,
C. J.
Moore
, and
G.
Ceder
,
Phys. Rev. B
85
,
155208
(
2012
).
[19]
A. A.
Emery
and
C.
Wolverton
,
Sci. Data
4
,
170153
(
2017
).
[20]
S.
Chen
,
Z. N.
Wei
,
G. Q.
Sun
,
W.
Wei
, and
D.
Wang
,
IEEE Trans. Power Syst.
34
,
1740
(
2019
).
[21]
G.
Wang
,
U. V.
Shanbhag
,
T. X.
Zheng
,
E.
Litvinov
, and
S.
Meyn
,
IEEE Trans. Power Syst.
28
,
2121
(
2013
).
[22]
T.
Ishikawa
and
T.
Miyake
,
Phys. Rev. B
101
,
214106
(
2020
).
[23]
M.
Orio
,
D. A.
Pantazis
, and
F.
Neese
,
Photosynth. Res.
102
,
443
(
2009
).
[24]
X. D.
Pi
,
Z. Y.
Ni
,
Y.
Liu
,
Z. C.
Ruan
,
M. S.
Xu
, and
D. R.
Yang
,
Phys. Chem. Chem. Phys.
17
,
4146
(
2015
).
[25]
L.
Wei
,
G. L.
Liu
, and
G. Y.
Zhang
,
Mater. Res. Express
7
,
015032
(
2020
).
[26]
Z. H.
Zhou
,
Machine Learning,
Singapore
:
Springer
, (
2021
).
[27]
M. I.
Jordan
and
T. M.
Mitchell
,
Science
349
,
255
(
2015
).
[28]
T. Q.
Chen
and
C.
Guestrin
,
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco
,
785
(
2016
).
[29]
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
, and
G.
Ceder
,
APL Mater.
1
,
011002
(
2013
).
[30]
A. C.
Cameron
and
F. A. G.
Windmeijer
,
J. Econom.
77
,
329
(
1997
).
[31]
Z. L.
Wang
,
X. R.
Lin
,
Y. Q.
Han
,
J. F.
Cai
,
S. C.
Wu
,
X.
Yu
, and
J. J.
Li
,
Nano Energy
89
,
106337
(
2021
).
[32]
S. H.
Chao
,
Y.
Suzuki
,
J. R.
Zysk
, and
W. Y.
Cheung
,
Mol. Pharmacol.
26
,
75
(
1984
).
[33]
J. C.
Hao
,
Z. C.
Zhuang
,
K. C.
Cao
,
G. H.
Gao
,
C.
Wang
,
F. L.
Lai
,
S. L.
Lu
,
P. M.
Ma
,
W. F.
Dong
,
T. X.
Liu
,
M. L.
Du
, and
H.
Zhu
,
Nat. Commun.
13
,
2662
(
2022
).
[34]
P.
Politzer
,
J. S.
Murray
, and
F. A.
Bulat
,
J. Mol. Model.
16
,
1731
(
2010
).
[35]
[36]
W. R.
Johnson
,
D.
Kolb
, and
K. N.
Huang
,
At. Data Nucl. Data Tables
28
,
333
(
1983
).
[37]
S. J.
Pearton
,
C. R.
Abernathy
,
M. E.
Overberg
,
G. T.
Thaler
,
D. P.
Norton
,
N.
Theodoropoulou
,
A. F.
Hebard
,
Y. D.
Park
,
F.
Ren
,
J.
Kim
, and
L. A.
Boatner
,
J. Appl. Phys.
93
,
1
(
2003
).
[38]
H. F.
Yao
,
Y.
Cui
,
R. N.
Yu
,
B. W.
Gao
,
H.
Zhang
, and
J. H.
Hou
,
Angew. Chern. Int. Ed.
56
,
3045
(
2017
).
This content is only available via PDF.

Supplementary Material