To gain a deeper understanding of the highly efficient mechanisms within the photosynthetic bacterial reaction center (BRC), we have employed femtosecond broadband fluorescence spectroscopy to investigate the dynamics of initial photo-induced energy transfer and charge separation in BRC at room temperature. Benefiting from the broadband spectral coverage inherent of this technique, two distinct transient emission species associated with bacteriochlorophylls B and P are directly identified, with Stokes shifts determined to be ~197 and 450 cm−1, respectively. The ultrafast energy transfers from bacteriopheophytin H to B (98 fs) and from B to P (170 fs) are unveiled through fitting the emission dynamics. Notably, the anticipated sub-200 fs lifetime of B emission significantly extends to ~400 fs, suggesting a plausible coupling between the electronic excited state of Band the vibronic states of P, potentially influencing the acceleration of the energy transfer process. These findings should pave the way for understanding the impact of vibronic dynamics on the photo-induced primary processes in the photosynthetic reaction center.

[1]
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
Van Grondelle
,
Nat. Chem.
3
,
763
(
2011
).
[2]
J.
Deisenhofer
,
O.
Epp
,
K.
Miki
,
R.
Huber
, and
H.
Michel
,
Nature
318
,
618
(
1985
).
[3]
J.
Allen
,
G.
Feher
,
T.
Yeates
,
H.
Komiya
, and
D.
Rees
,
Proc. Natl. Acad. Sci. USA
84
,
5730
(
1987
).
[4]
U.
Ermler
,
G.
Fritzsch
,
S. K.
Buchanan
, and
H.
Michel
,
Structure
2
,
925
(
1994
).
[5]
M. E.
van Brederode
and
M. R.
Jones
,
Enzyme-Catalyzed Electron and Radical Transfer: Subcellular Bio-chemistry,
New York
:
Springer
,
621
(
2000
).
[6]
W. W.
Parson
,
Z. T.
Chu
, and
A.
Warshel
,
Biochim. Biophys. Acta
1017
,
251
(
1990
).
[7]
L. M.
McDowell
,
D.
Gaul
,
C.
Kirmaier
,
D.
Holten
, and
C. C.
Schenck
,
Biochemistry
30
,
8315
(
1991
).
[8]
M.
Marchi
,
J. N.
Gehlen
,
D.
Chandler
, and
M.
Newton
,
J. Am. Chem. Soc.
115
,
4178
(
1993
).
[9]
M. A.
Steffen
,
K.
Lao
, and
S. G.
Boxer
,
Science
264,
810
(
1994
).
[10]
M.
Plato
,
K.
Möbius
,
M.
Michel-Beyerle
,
M.
Bixon
, and
J.
Jortner
,
J. Am. Chem. Soc.
110
,
7279
(
1988
).
[11]
R.
van Grondelle
,
J. P.
Dekker
,
T.
Gillbro
, and
V.
Sundstrom
,
Biochimica et Biophysica Acta
1187,
1
(
1994
).
[12]
W.
Zinth
and
J.
Wachtveitl
,
ChemPhysChem
6
,
871
(
2005
).
[13]
J.
Breton
,
J. L.
Martin
,
A.
Migus
,
A.
Antonetti
, and
A.
Orszag
,
Proc. Natl. Acad. Sci. USA
83
,
5121
(
1986
).
[14]
C.
Kirmaier
and
D.
Holten
,
Photosynth. Res.
13
,
225
(
1987
).
[15]
J. S.
Joseph
,
W.
Bruno
, and
W.
Bialek
,
J. Chem. Phys.
95
,
6242
(
1991
).
[16]
J. T.
Kennis
,
A. Y.
Shkuropatov
,
I. H.
van Stokkum
,
P.
Gast
,
A. J.
Hoff
,
V. A.
Shuvalov
, and
T. J.
Aartsma
,
Biochemistry
36
,
16231
(
1997
).
[17]
I.
Van Stokkum
,
L.
Beekman
,
M.
Jones
,
M.
Van Brederode
, and
R.
van Grondelle
,
Biochemistry
36
,
11360
(
1997
).
[18]
M. E.
Van Brederode
,
F.
Van Mourik
,
I. H.
Van Stokkum
,
M. R.
Jones
, and
R.
van Grondelle
,
Proc. Natl. Acad. Sci. USA
96
,
2054
(
1999
).
[19]
S.
Lin
,
A. K. W.
Taguchi
, and
N. W.
Woodbury
,
J. Chem. Phys.
100
,
17067
(
1996
).
[20]
J.
Zhu
,
I. H.
van Stokkum
,
L.
Paparelli
,
M. R.
Jones
, and
M. L.
Groot
,
Biophys. J.
104
,
2493
(
2013
).
[21]
R. J.
Stanley
,
B.
King
, and 8.
G.
Boxer
,
J. Chem. Phys.
100
,
12052
(
1996
).
[22]
W.
Sistrom
,
Microbiology
22
,
778
(
1960
).
[23]
R. C.
Prince
,
E.
Davidson
,
C. E.
Haith
, and
F.
Daldal
,
Biochemistry
25
,
5208
(
1986
).
[24]
J. Y.
Zhang
,
C. K.
Lee
,
J. Y.
Huang
, and
C. L.
Pan
,
Opt. Express.
12
,
574
(
2004
).
[25]
P.
Fita
,
Y.
Stepanenko
, and
C.
Radzewicz
,
Appl. Phys. Lett.
86
,
021909
(
2005
).
[26]
X. H.
Chen
,
X. F.
Han
,
Y. X.
Weng
, and
J. Y.
Zhang
,
Appl. Phys. Lett.
89
,
061127
(
2006
).
[27]
X. F.
Han
,
X. H.
Chen
,
Y. X.
Weng
, and
J. Y.
Zhang
,
J. Opt. Soc. Am. B
24
,
1633
(
2007
).
[28]
H. L.
Chen
,
Y. X.
Weng
, and
X. Y.
Li
,
Chin. J. Chem. Phys.
24
,
253
(
2011
).
[29]
P.
Mao
,
Z.
Wang
,
W.
Dang
, and
Y.
Weng
,
Rev. Sci. Instrum.
86
,
123113
(
2015
).
[30]
H. L.
Chen
,
Y. X.
Weng
, and
J. Y.
Zhang
,
J. Opt. Soc. Am. B
26
,
1627
(
2009
).
[31]
W.
Dang
,
Z.
Wang
, and
Y.
Weng
,
Sci. Sin. Chim.
43,
1713
(
2013
).
[33]
M. E.
Breton
,
G. E.
Quinn
,
S. S.
Keene
,
J. C.
Dahmen
, and
A. J.
Brucker
,
Ophthalmology
96
,
1343
(
1989
).
[34]
C. K.
Tang
,
J. C.
Williams
,
A. K.
Taguchi
,
J. P.
Allen
, and
N. W.
Woodbury
,
Biochemistry
38
,
8794
(
1999
).
[35]
M.
Du
, 8.
J.
Rosenthal
,
X.
Xie
,
T. J.
DiMagno
,
M.
Schmidt
,
D. K.
Hanson
,
M.
Schiffer
,
J. R.
Norris
, and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. USA
89
,
8517
(
1992
).
[36]
D.
Palecek
,
P.
Edlund
,
S.
Westenhoff
, and
D.
Zigmantas
,
Sci. Adv.
3
,
e1603141
(
2017
).
[37]
A.
Konar
,
R.
Sechrist
,
Y.
Song
,
V. R.
Policht
,
P. D.
Laible
,
D. F.
Bocian
,
D.
Holten
,
C.
Kirmaier
, and
J. P.
Ogilvie
,
J. Phys. Chem. Lett.
9
,
5219
(
2018
).
[38]
A.
Niedringhaus
,
V. R.
Policht
,
R.
Sechrist
,
A.
Konar
,
P. D.
Laible
,
D. F.
Bocian
,
D.
Holten
,
C.
Kirmaier
, and
J. P.
Ogilvie
,
Proc. Natl. Acad. Sci. USA
115
,
3563
(
2018
).
[39]
F.
Ma
,
E.
Romero
,
M. R.
Jones
,
V. I.
Novoderezhkin
, and
R.
van Grondelle
,
Nat. Commun.
10
,
933
(
2019
).
[40]
B. A.
King
,
R. J.
Stanley
, and
S. G.
Boxer
,
J. Phys. Chem. B
101
,
3644
(
1997
).
[41]
B. A.
King
,
T. B.
McAnaney
,
A.
Dewinter
, and
S. G.
Boxer
,
J. Phys. Chem. B
104
,
8895
(
2000
).
[42]
X. J.
Jordanides
,
G. D.
Scholes
, and
G. R.
Fleming
,
J. Phys. Chem. B
105
,
1652
(
2001
).
[43]
M.
Ratsep
,
J.
Linnanto
, and
A.
Freiberg
,
J. Chem. Phys.
130
,
194501
(
2009
).
[44]
M.
Ratsep
,
J. M.
Linnanto
, and
A.
Freiberg
,
J. Phys. Chem. B
123
,
7149
(
2019
).
[45]
M. R.
Jones
,
Biochem. Soc. Trans.
37
,
400
(
2009
).
[46]
Y.
Jia
,
D. M.
Jonas
,
T.
Joo
,
Y.
Nagasawa
,
M. J.
Lang
, and
G. R.
Fleming
,
J. Chem. Phys.
99
,
6263
(
1995
).
[47]
H.
Wang
,
S.
Lin
,
J. P.
Allen
,
J. C.
Williams
,
S.
Blankert
,
C.
Laser
, and
N. W.
Woodbury
,
Science
316
,
747
(
2007
).
This content is only available via PDF.