Photoelectron velocity map images of Cu(CO)3 have been experimentally recorded in the 700–1100 nm range. The infrared-inactive Cu-C symmetric stretching modes for Cu(CO)3 (v2 ≈ 367 cm−1) and Cu(CO)3 (v2 ≈ 408 cm−1), as well as the electron affinity (1.03±0.11 eV) of Cu(CO)3, are accurately determined from high resolution photoelectron spectra. In combination with quantum chemical calculations and bonding analyses, the coordination bonds in both Cu(CO)3 are Cu(CO)3 are found to be due to back-donation π bonding type, formed via electron promotion from Cu’s 4s orbital to the 4p orbital, which is consequently donated to the unoccupied anti-bonding π* orbitals of the carbonyl groups. The attachment of an additional electron to Cu(CO)3 strengthens the Cu-CO coordination, making Cu(CO)3 more stable. The intramolecular interactions between the Cu/Cu and carbonyl groups are found to be primarily governed by electrostatic forces and orbital interactions.

1.
F. A.
Cotton
,
G.
Wilkinson
,
C. A.
Murillo
, and
M.
Bochmann
,
Advanced Inorganic Chemistry,
6th Edn.,
Hoboken
:
John Wiley & Sons
, (
1999
).
2.
W.
Zhang
,
Y.
Zhou
,
W.
Chen
,
T.
Wang
,
Z.
Qin
,
G.
Li
,
Z.
Ren
,
X.
Yang
, and
C.
Zhou
,
Chin. J. Chem. Phys.
36
,
249
(
2023
).
3.
S.
Lei
,
Y.
Zhou
,
X.
Jin
,
G.
Wang
, and
M.
Zhou
,
Chin. J. Chem. Phys.
35
,
867
(
2022
).
4.
M.
Li
,
W.
Li
,
Y.
Hu
,
J.
Leng
,
W.
Tian
,
C.
Zhao
,
J.
Liu
,
R.
Cui
,
S.
Jin
,
C.
Cheng
, and
S.
Cong
,
Chin. J. Chem. Phys.
35
,
900
(
2022
).
5.
M. F.
Zhou
,
L.
Andrews
, and
C. W.
Bauschlicher
,
Chem. Rev.
101
,
1931
(
2001
).
6.
E. L.
Muetterties
and
J.
Stein
,
Chem. Rev.
79
,
479
(
1979
).
7.
X.
Zhang
,
S.
Hao
,
F.
Tang
,
B.
Li
,
X.
Zhou
,
L.
Liu
, and
L.
Xia
,
Chin. J. Chem. Phys.
35
,
813
(
2022
).
8.
C. W.
Bauschlicher
and
P. S.
Bagus
,
J. Chem. Phys.
81
,
5889
(
1984
).
9.
F.
Nitschké
,
G.
Ertl
, and
J.
Küppers
,
J. Chem. Phys.
74
,
5911
(
1981
).
10.
M. F.
Zhou
and
L.
Andrews
,
J. Chem. Phys.
Ill
,
4548
(
1999
).
11.
M. E.
Alikhani
and
L.
Manceron
,
J. Mol. Spectrosc.
310
,
32
(
2015
).
12.
J.
Stanzel
,
E. F.
Aziz
,
M.
Neeb
, and
W.
Eberhardt
,
Collect. Czech. Chem. Commun.
72
,
1
(
2007
).
13.
S.
Feng
,
Z.
Li
,
W.
Liu
,
Q.
Zhang
,
Y.
Chen
, and
D.
Zhao
,
Chin. J. Chem. Phys.
(
2024
). DOI: .
14.
Y.
Xie
,
H.
Liu
,
Y.
Xiao
,
J.
Han
,
Z.
Li
,
Y.
Wang
,
T.
Wang
,
X.
Yang
, and
T.
Yang
,
Chin. J. Chem. Phys.
36
,
259
(
2023
).
15.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
16.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
17.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
18.
J. J.
Zheng
,
X. F.
Xu
, and
D. G.
Truhlar
,
Theor. Chem. Acc.
128
,
295
(
2011
).
19.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
20.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
Williams
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Kiene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16 Rev. C. 02,
Wallingford, CT
:
Gaussian Inc
., (
2016
).
21.
C. M.
Western
,
J. Quant. Spectrosc. Radiat. Transfer
186
,
221
(
2017
).
22.
J.
Klein
,
H.
Khartabil
,
J. C.
Boisson
,
J.
Contreras-García
,
J. P.
Piquemal
, and
E.
Hénon
,
J. Phys. Chem. A
124
,
1850
(
2020
).
23.
T.
Lu
and
Q. X.
Chen
,
J. Comput. Chem.
43
,
539
(
2022
).
24.
J.
Zhang
and
T.
Lu
,
Phys. Chem. Chem. Phys.
23
,
20323
(
2021
).
25.
T.
Lu
and
Q. X.
Chen
,
J. Phys. Chem. A
127
,
7023
(
2023
).
26.
T.
Lu
and
F. W.
Chen
,
Acta Chim. Sin.
69
,
2393
(
2011
).
27.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
78
,
4066
(
1983
).
28.
T.
Lu
and
F. W.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
29.
J.
Gu
,
Z.
Xiao
,
C.
Yu
,
Q.
Zhang
,
Y.
Chen
, and
D.
Zhao
,
Chin. J. Chem. Phys.
35
,
58
(
2022
).
30.
E. R.
Grumbling
and
A.
Sanov
,
J. Chem. Phys.
135
,
164302
(
2011
).
32.
A.
Sanov
,
E. R.
Grumbling
,
D. J.
Goebbert
, and
L. M.
Culberson
,
J. Chem. Phys.
138
,
054311
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.