The measurement of the combustion characteristics of a single biomass particle is essential for studying massive biofuel energy conversion process; however, it is challenging due to the small physical scale of the biomass particle flame. In this work, we report an investigation of the combustion behavior of single lignin and single cellulose particle through CO2 absorption spectroscopy and high-speed photography. The biomass samples are prepared with an initial diameter of about 1.0 mm and are ignited on a heating plate placed inside a multi-pass absorption cell. The shape and size transformation of single biomass particle are recorded through high-speed photography, and the combustion temperature and CO2 column densities are measured through laser absorption spectroscopy at 4.172 µm. We find that the maximum combustion temperatures are 1662 ± 38 K and 1569 ± 26 K for lignin and cellulose particle, respectively. Besides, we find that CO2 generation precedes the generation of visible volatile flame for cellulose particle. While for lignin particle, the CO2 generation is found to be almost at the same time as its volatile combustion stage begins. The measurement technique and results presented in this work are of practical interest for biomass combustion studies and arc meaningful for the development of biomass thermal conversion mode.

1.
V.
Dhyani
and
T.
Bhaskar
,
Renewable Energy
129
,
695
(
2018
).
2.
M. H.
Fan
,
S. L.
Ge
,
Z.
Zhang
,
Y. S.
Xie
, and
Q. X.
Li
,
Chin. J. Chem. Phys.
31
,
725
(
2018
).
3.
F.
Jin
,
M. H.
Fan
,
Q. F.
Jia
, and
Q. X.
Li
,
Chin. J. Chem. Phys.
30
,
348
(
2017
).
4.
X. P.
Wu
,
M. H.
Fan
, and
Q. X.
Li
,
Chin. J. Chem. Phys.
30
,
479
(
2017
).
5.
J.
Twidell
,
Renewable Energy Resources,
4th Edn.,
London: Routledge
, (
2021
).
6.
P. E.
Mason
,
L. I.
Darvell
,
J. M.
Jones
,
M.
Pourkashanian
, and
A.
Williams
,
Fuel
151
,
21
(
2015
).
7.
H.
Zhou
,
Y.
Li
,
N.
Li
, and
K. F.
Cen
,
J. Energy Inst.
92
,
502
(
2019
).
8.
M.
Aldén
,
Proc. Combust. Inst.
39
,
1185
(
2023
).
9.
A.
Mlonka-Mędrala
,
A.
Magdziarz
,
T.
Dziok
,
M.
Sieradzka
, and
W.
Nowak
,
Fuel
252
,
635
(
2019
).
10.
L.
Shan
,
M.
Kong
,
T. D.
Bennet
,
A. C.
Sarroza
,
C.
Eastwick
,
D.
Sun
,
G.
Lu
,
Y.
Yan
, and
H.
Liu
,
Biomass Bioenergy
109
,
54
(
2018
).
11.
A.
Sepman
,
Y.
Ogren
,
Z. C.
Qu
,
H.
Wiinikka
, and
F. M.
Schmidt
,
Energy Fuels
33
,
11795
(
2019
).
12.
Z. C.
Qu
,
E.
Steinvall
,
R.
Ghorbani
, and
F. M.
Schmidt
,
Anal. Chem.
88
,
3754
(
2016
).
13.
Z. C.
Qu
and
F. M.
Schmidt
,
Appl. Phys. B
119
,
45
(
2015
).
14.
J.
Li
,
M. C.
Paul
,
P. L.
Younger
,
I.
Watson
,
M.
Hossain
, and
S.
Welch
,
Appl. Energy
156
,
749
(
2015
).
15.
Y.
Haseli
,
J. A.
Van Oijen
, and
L. P. H.
De Goey
,
Bioresour. Technol.
102
,
9772
(
2011
).
16.
Y. B.
Yang
,
V. N.
Sharifi
,
J.
Swithenbank
,
L.
Ma
,
L. I.
Darvell
,
J. M.
Jones
,
M.
Pourkashanian
, and
A.
Williams
,
Energy Fuels
22
,
306
(
2008
).
17.
H.
Thunman
,
B.
Leckner
,
F.
Niklasson
, and
F.
Johnsson
,
Conibus. Flame
129
,
30
(
2002
).
18.
H.
Lu
,
W.
Robert
,
G.
Peirce
,
B.
Ripa
, and
L. L.
Baxter
,
Energy Fuels
22
,
2826
(
2008
).
19.
X.
Liu
,
M. Q.
Chen
, and
Y. H.
Wei
,
Renewable Energy
81
,
355
(
2015
).
20.
Y. H.
Wei
,
M. Q.
Chen
,
S. B.
Niu
, and
F.
Xue
,
J. Therm. Anal. Calorim.
124
,
1651
(
2016
).
21.
J.
Riaza
,
P. E.
Mason
,
J. M.
Jones
,
A.
Williams
,
J.
Gibbins
, and
H.
Chalmers
,
Fuel
261
,
116334
(
2020
).
22.
J.
Riaza
,
R.
Khatami
,
Y. A.
Levendis
,
L.
Álvarez
,
M. V.
Gil
,
C.
Pevida
,
F.
Rubiera
, and
J. J.
Pis
,
Biomass Bioenergy
64
,
162
(
2014
).
23.
H.
Fatehi
,
W. B.
Weng
,
M.
Costa
,
Z. S.
Li
,
M.
Rabaçal
,
M.
Aldén
, and
X. S.
Bai
,
Combust. Flame
206
,
400
(
2019
).
24.
D.
Hot
,
R. L.
Pedersen
,
W. B.
Weng
,
Y. H.
Zhang
,
M.
Aldén
, and
Z. S.
Li
,
Proc. Combust. Inst.
37
,
1337
(
2019
).
25.
W. B.
Weng
,
H.
Feuk
,
S.
Li
,
M.
Richter
,
M.
Aldén
, and
Z. S.
Li
,
Proc. Combust. Inst.
38
,
3929
(
2021
).
26.
J.
Köser
,
T.
Li
,
N.
Vorobiev
,
A.
Dreizler
,
M.
Schieniann
, and
B.
Böhm
,
Proc. Combust. Inst.
37
,
2893
(
2019
).
27.
A.
Farooq
,
A. B. S.
Alquaity
,
M.
Raza
,
E. F.
Nasir
,
S. C.
Yao
, and
W.
Ren
,
Prog. Energy Combust. Sci.
91
,
100997
(
2022
).
28.
W. B.
Weng
,
Q.
Gao
,
Z. H.
Wang
,
R.
Whiddon
,
Y.
He
,
Z. S.
Li
,
M.
Aldén
, and
K.
Cen
,
Energy Fuels
31
,
2831
(
2017
).
29.
Z. Z.
Wang
,
T.
Kamimoto
,
Y.
Deguchi
,
W. Z.
Zhou
,
J. J.
Yan
,
K.
Tainaka
,
K.
Tanno
,
H.
Watanabe
, and
R.
Kurose
,
Appl. Therm. Eng.
171
,
115066
(
2020
).
30.
Z. Z.
Wang
,
Y.
Deguchi
,
T.
Kamimoto
,
K.
Tainaka
, and
K.
Tanno
,
Fuel
268
,
117370
(
2020
).
31.
M. M.
Gu
,
S. J.
Wang
,
G. Q.
Wang
,
Q. X.
Wang
,
X. C.
Liu
,
F.
Qi
, and
C. S.
Goldenstein
,
Appl. Phys. B
128
,
131
(
2022
).
32.
D. D.
Lee
,
F. A.
Bendana
,
A. P.
Nair
,
S. A.
Danczyk
,
W. A.
Hargus
, and
R. M.
Spearrin
,
Proc. Combust. Inst.
38
,
1685
(
2021
).
33.
L. S.
Rothman
,
I. E.
Gordon
,
R. J.
Barber
,
H.
Dothe
,
R. R.
Gamache
,
A.
Goldman
,
V. I.
Perevalov
,
S. A.
Tashkun
, and
J.
Tennyson
,
J. Quant. Spectrosc. Radiat. Transfer
111
,
2139
(
2010
).
34.
A. P.
Nair
,
D. D.
Lee
,
D. I.
Pineda
,
J.
Kriesel
,
W. A.
Hargus
Jr
,
J. W.
Bennewitz
,
S. A.
Danczyk
, and
R. M.
Spearrin
,
Appl. Phys. B
126
,
138
(
2020
).
35.
A.
Malmgren
and
G.
Riley
,
Biomass Power Generation,
Oxford
:
Elsevier
,
27
(
2012
).
36.
A.
Gani
and
I.
Naruse
,
Renewable Energy
32
,
649
(
2007
).
37.
J.
Li
,
X. W.
Bai
,
Y.
Fang
,
Y. Q.
Chen
,
X. H.
Wang
,
H. P.
Chen
, and
H. P.
Yang
,
Combust. Flame
215
,
1
(
2020
).
38.
S. S.
Wang
,
C.
Zou
,
H. P.
Yang
,
C.
Lou
,
S. Z.
Cheng
,
C.
Peng
,
C.
Wang
, and
H. R.
Zou
,
Bioresour. Technol.
320
,
124375
(
2021
).
39.
S. S.
Wang
,
C.
Zou
,
C.
Lou
,
H. P.
Yang
,
M.
Mei
,
H. X.
Jing
, and
S. Z.
Cheng
,
Bioresour. Technol.
310
,
123456
(
2020
).
40.
S.
Matsuoka
,
H.
Kawamoto
, and
S.
Saka
,
J. Anal. Appl. Pyrolysis
106
,
138
(
2014
).
41.
Y. C.
Lin
,
J.
Cho
,
G. A.
Tompsett
,
P. R.
Westmoreland
, and
G. W.
Huber
,
J. Phys. Chem. C
113
,
20097
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.