Utilizing density functional theory (DFT) and non-equilibrium Green’s function, we systematically studied the electrical transport and rectification properties of thiol- and amino-terminated molecules embedded in graphene nanoribbons. We firstly found the thiol-terminated molecules show better electron transport properties compared to the amino-terminated, which can be attributed to the strong electronwithdrawing ability and favorable coupling effects. Secondly, the symmetrical molecules show almost symmetrical current-voltage (I-V) curves and exhibit negligible rectification effects. On the other hand, the asymmetrical molecules exhibit asymmetrical I-V curves and better rectification performance. The rectification effect is closely related to molecular asymmetry degrees. For example, the rectification ratio of asymmetric N6 ((E)-Nl-(3-aminopropyl)-but-2-ene-1,4-diamine) molecule is much smaller than the N4 (5-phenylthiazole-2,4-diamine) and N5 (2,6-diaminohexane-1,1,5-triol) molecules. Furthermore, we found the rectification ratio of the asymmetrical amino-terminated molecules can reach 400, while the biggest rectification ratio of the thiol-terminated molecule can only reach 45. These findings offer crucial insights for future graphene molecular electronic device design.

[1]
G. E.
Moore
,
2003 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC,
San Francisco, CA, USA
,
20
(
2003
).
[2]
N.
Fleurence
,
S.
Demeyer
,
A.
Allard
,
S.
Douri
, and
B.
Hay
,
Nanomaterials (Basel)
13
,
2424
(
2023
).
[3]
R.
Frisenda
,
V. A. E. C.
Janssen
,
F. C.
Grozema
,
H. S. J.
Van Der Zant
, and
N.
Renaud
,
Nat. Chem.
8
,
1099
(
2016
).
[4]
Y. P.
An
,
Y. S.
Hou
,
K.
Wang
,
S. J.
Gong
,
C. L.
Ma
,
C. X.
Zhao
,
T. X.
Wang
,
Z. Y.
Jiao
,
H. Y.
Wang
, and
R. Q.
Wu
,
Adv. Funct. Mater.
30
,
2002939
(
2020
).
[5]
A.
Benhnia
,
S.
Watanabe
,
R.
Tuerhong
,
M.
Nakaya
,
J.
Onoe
, and
J. P.
Bucher
,
Nanomaterials (Basel)
11
,
1618
(
2021
).
[6]
C. Y.
Li
,
Y.
Cao
,
J. D.
Ru
,
J.
Dong
, and
M. T.
Sun
,
Adv. Electron. Mater.
9
,
2300063
(
2023
).
[7]
M.
Horowitz
,
E.
Alon
,
D.
Patil
,
S.
Naffziger
,
R.
Kumar
, and
K.
Bernstein
,
IEEE International Electron Devices Meeting. IEDM Technical Digest,
Washington
,
7
15
(
2005
).
[8]
R. P.
Feynman
,
J. Microelectromech. Syst.
1
,
60
(
1992
).
[9]
A.
Aviram
and
M. A.
Ratner
,
Chem. Phys. Lett.
29
,
277
(
1974
).
[10]
Y.
Zhao
,
W. Q.
Liu
,
J. Y.
Zhao
,
Y. S.
Wang
,
J. T.
Zheng
,
J. Y.
Liu
,
W. J.
Hong
, and
Z. Q.
Tian
,
Int. J. Extrem. Manuf.
4
,
022003
(
2022
).
[11]
L.
Herrer
,
A.
Ismael
,
S.
Martín
,
D. C.
Milan
,
J. L.
Serrano
,
R. J.
Nichols
,
C.
Lambert
, and
P.
Cea
,
Nanoscale
11
,
15871
(
2019
).
[12]
X.
Zhu
,
B. Y.
Wang
,
W.
Xiong
,
S. Y.
Zhou
,
K.
Qu
,
J. T.
,
H. L.
Chen
,
C. C.
Jia
, and
X. F.
Guo
,
Angew. Chem. Int. Ed.
61
,
e202210939
(
2022
).
[13]
X. C.
Hong
,
D. D.
Zhang
,
C.
Yin
,
Q. W.
Wang
,
Y. Y.
Zhang
,
T. B.
Huang
,
J.
Wei
,
X. Y.
Zeng
,
G.
Meng
,
X.
Wang
,
G. M.
Li
,
D. Z.
Yang
,
D. G.
Ma
, and
L.
Duan
,
Chem
8
,
1705
(
2022
).
[14]
S. M.
Wu
,
M. T.
González
,
R.
Huber
,
S.
Grunder
,
M.
Mayor
,
C.
Schönenberger
, and
M.
Calame
,
Nat. Nanotechnol.
3
,
569
(
2008
).
[15]
Y. W.
Kim
,
D.
Lee
,
Y.
Jeon
,
H.
Yoo
,
E. S.
Cho
,
E.
Darici
,
Y. J.
Park
,
K. I.
Seo
, and
S. J.
Kwon
,
Nanomaterials (Basel)
13
,
2820
(
2023
).
[16]
Z. X.
Wang
,
J. L.
Palma
,
H.
Wang
,
J. Z.
Liu
,
G.
Zhou
,
M. R.
Ajayakumar
,
X. L.
Feng
,
W.
Wang
,
J.
Ulstrup
,
A. A.
Kornyshev
,
Y. Q.
Li
, and
N. J.
Tao
,
Proc. Natl. Acad. Sci. USA
119
,
e2122183119
(
2022
).
[17]
N. P.
Guisinger
,
R.
Basu
,
M. E.
Greene
,
A. S.
Baluch
, and
M. C.
Hersam
,
Nanotechnology
15
,
8452
(
2004
).
[18]
Z. Y.
Liu
,
X.
Wang
,
T.
Lu
,
A. H.
Yuan
, and
X. F.
Yan
,
Carbon
187
,
78
(
2022
).
[19]
M.
Sharifi
,
E.
Akhoundi
, and
H.
Esmaili
,
J. Comput. Electron.
15
,
1361
(
2016
).
[20]
W.
Hu
,
G. P.
Zhang
,
S.
Duan
,
Q.
Fu
, and
Y.
Luo
,
J. Phys. Chem. C
119
,
11468
(
2015
).
[21]
Q.
Van Nguyen
,
J. Phys. Chem. C
126
,
6405
(
2022
).
[22]
M. W.
Gu
,
H. H.
Peng
,
I. W. P.
Chen
, and
C. H.
Chen
,
Nat. Mater.
20
,
658
(
2021
).
[23]
C.
Yang
,
C. Y.
Yang
,
Y. L.
Guo
,
J. F.
Feng
, and
X. F.
Guo
,
Nat. Protoc.
18
,
1958
(
2023
).
[24]
S.
Sagadevan
,
M. Z.
Rahman
,
E.
Léonard
,
D.
Losic
, and
V.
Hessel
,
Nanomaterials (Basel)
13
,
846
(
2023
).
[25]
S.
Schuler
,
D.
Schall
,
D.
Neumaier
,
B.
Schwarz
,
K.
Watanabe
,
T.
Taniguchi
, and
T.
Mueller
,
ACS Photonics
5
,
4758
(
2018
).
[26]
B.
Uzlu
,
Z. X.
Wang
,
S.
Lukas
,
M.
Otto
,
M. C.
Lemme
, and
D.
Neumaier
,
Sci. Rep.
9
,
18059
(
2019
).
[27]
E. O.
Polat
,
H. B.
Uzlu
, O. Balci,
N.
Kakenov
,
E.
Kovalska
, and
C.
Kocabas
,
ACS Photonics
3
,
964
(
2016
).
[28]
M. C.
Lemme
,
T. J.
Echtermeyer
,
M.
Baus
, and
H.
Kurz
,
IEEE Electron Dev. Lett.
28
,
282
(
2007
).
[29]
L.
Martini
,
Z. P.
Chen
,
N.
Mishra
,
G. B.
Barin
,
P.
Fantuzzi
,
P.
Ruffieux
,
R.
Fasel
,
X. L.
Feng
,
A.
Narita
,
C.
Coletti
,
K.
Müllen
, and
A.
Canclini
,
Carbon
146
,
36
(
2019
).
[30]
R. A.
Durr
,
D.
Haberer
,
Y. L.
Lee
,
R.
Blackwell
,
A. M.
Kalayjian
,
T.
Marangoni
,
J.
Ihm
,
S. G.
Louie
, and
F. R.
Fischer
,
J. Am. Chem. Soc.
140
,
807
(
2018
).
[31]
S. M.
Kim
,
W. R.
Park
,
J. S.
Park
,
S. M.
Song
, and
O. H.
Kwon
,
Materials (Basel)
16
,
962
(
2023
).
[32]
H. Q.
Wan
,
B. H.
Zhou
,
X. W.
Chen
,
C. Q.
Sun
, and
G. H.
Zhou
,
J. Phys. Chem. C
116
,
2570
(
2012
).
[33]
L.
Hou
,
H. M.
Hu
,
G. W.
Yang
, and
G.
Ouyang
,
Phys. Status Solidi
15
,
2000582
(
2021
).
[34]
QuantumATK Version 2018. 06, Synopsys QuantumATK. Available online: https://www.synopsys.com/silicon/quantumatk.html. (accessed on 30 April
2020
).
[35]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.