Dissociative adsorption of HCl on Au(111) has become one of unsolved puzzles in surface chemistry. Despite tremendous efforts in the past years, various theoretical models still greatly overestimate the zero-coverage initial sticking probabilities (S0). To find the origin of the large experiment-theory discrepancy, we have revisited the dissociative adsorption of HCl on Au(111) with a newly designed molecular beam-surface apparatus. The zero-coverage S0 derived from Cl-coverage measurements with varying HCl doses agree well with previous ones. However, we notice a sharp change of the coverage/dose slope with the HCl dosage at the low coverage regime, which may result in some uncertainties to the fitted S0 value. This seems consistent with a coverage-dependence of the dissociation barrier predicted by density functional theory at low Cl-coverages. Our results reveal the potential inconsistency of utilizing simulations with finite coverage to compare; against experimental data with zero coverage in this system, and provide guidance for improving both experiment and theory in this regard.

[1]
J.
Greeley
,
J. K.
Nørskov
. and
M.
Mavrikakis
,
Annu. Rev. Phys. Chem.
53
,
319
(
2002
).
[2]
H.
Chadwick
and
R. D.
Beck
,
Annu. Rev. Phys. Chem.
68
,
39
(
2017
).
[3]
H. A.
Michelsen
,
C. T.
Rettner
,
D. J.
Auerbach
, and
R. N.
Zare
,
J. Chem. Phys.
98
,
8294
(
1993
).
[4]
[5]
H.
Chadwick
and
R. D.
Beck
,
Chem. Soc. Rev.
45
,
3576
(
2016
).
[6]
C.
Díaz
,
E.
Pijper
,
R. A.
Olsen
,
H. F.
Busnengo
,
D. J.
Auerbach
, and
G. J.
Kroes
,
Science
326
,
832
(
2009
).
[7]
E. W. F.
Smeets
,
J.
Voss
, and
G. J.
Kroes
,
J. Phys. Chem.
123
,
5395
(
2019
).
[8]
E. N.
Ghassemi
,
E. W. F.
Smeets
,
M. F.
Somers
,
G. J.
Kroes
,
I. M. N.
Groot
,
L. B. F.
Juurlink
, and
G.
Füchsel
,
J. Phys. Chem. C
123
,
2973
(
2019
).
[9]
E. N.
Ghassemi
,
M. F.
Somers
, and
G. J.
Kroes
,
J. Phys. Chem. C
123
,
10406
(
2019
).
[10]
L. J.
Zhu
,
Y. L.
Zhang
,
L.
Zhang
,
X. Y.
Zhou
, and
B.
Jiang
,
Phys. Chem. Chem. Phys.
22
,
13958
(
2020
).
[11]
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
23
,
8962
(
2021
).
[12]
T. H.
Liu
,
B. N.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
139
,
184705
(
2013
).
[13]
P. R.
Shirhatti
,
J.
Geweke
,
C.
Steinsiek
,
C.
Bartels
,
I.
Rahinov
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
J. Phys. Chem. Lett.
7
,
1346
(
2016
).
[14]
B.
Kolb
and
H.
Guo
,
J. Chem. Phys.
145
,
011102
(
2016
).
[15]
G.
Füchsel
,
M.
Del Cueto
,
C.
Díaz
, and
G. J.
Kroes
,
J. Phys. Chem. C
120
,
25760
(
2016
).
[16]
B.
Kolb
,
X.
Luo
,
X. Y.
Zhou
,
B.
Jiang
, and
H.
Guo
,
J. Phys. Chem. Lett.
8
,
666
(
2017
).
[17]
T. H.
Liu
,
B. N.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
146
,
164706
(
2017
).
[18]
L. S.
Zhou
,
X. Y.
Zhou
,
M.
Alducin
,
L.
Zhang
,
B.
Jiang
, and
H.
Guo
,
J. Chem. Phys.
148
,
014702
(
2018
).
[19]
G.
Füchsel
,
X. Y.
Zhou
,
B.
Jiang
,
J. I.
Juaristi
,
M.
Alducin
,
H.
Guo
, and
G. J.
Kroes
,
J. Phys. Chem. C
123
,
2287
(
2019
).
[20]
N.
Gerrits
,
J.
Geweke
,
E. W. F.
Smeets
,
J.
Voss
,
A. M.
Wodtke
, and
G. J.
Kroes
,
J. Phys. Chem. C
124
,
15944
(
2020
).
[21]
N.
Gerrits
,
J.
Geweke
,
D. J.
Auerbach
,
R. D.
Beck
, and
F. J.
Kroes
,
J. Phys. Chem. Lett.
12
,
7252
(
2021
).
[22]
K. R.
Lykke
and
B. D.
Kay
,
J. Chem. Phys.
92
,
2614
(
1990
).
[23]
Q.
Ran
,
D.
Matsiev
,
A. M.
Wodtke
, and
D. J.
Auerbach
,
Rev. Sci. Instrum.
78
,
104104
(
2007
).
[24]
Q.
Ran
,
D.
Matsiev
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
Phys. Rev. Lett.
98
,
237601
(
2007
).
[25]
I.
Rahinov
,
R.
Cooper
,
C.
Yuan
,
X. M.
Yang
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
J. Chem. Phys.
129
,
214708
(
2008
).
[26]
Q.
Ran
,
D.
Matsiev
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
258
,
1
(
2007
).
[27]
Q. H.
Liu
,
X. Y.
Zhou
,
L. S.
Zhou
,
Y. L.
Zhang
,
X.
Luo
,
H.
Guo
, and
B.
Jiang
,
Phys. Chem. C
122
,
1761
(
2018
).
[28]
Q. Q.
Shen
,
J. W.
Wu
,
F. Y.
Zhou
,
Y. L.
Song
,
W. R.
Dong
,
X. A.
Wang
,
T.
Wang
, and
X. M.
Yang
,
Rev. Sci. Instrum.
93
,
013201
(
2022
).
[29]
L. E.
Davis
,
N. C.
MacDonald
,
P. W.
Palmberg
,
G. E.
Riach
, and
R. E.
Weber
,
Handbook of Auger Electron Spectroscopy,
2nd Edn,
Edina
:
PHI Industries
, (
1976
).
[30]
G. N.
Kastanas
and
B. E.
Koel
,
Appl. Surf. Sci.
64
,
235
(
1993
).
[31]
N. D.
Spencer
and
R. M.
Lambert
,
Surf. Sci.
107
,
237
(
1981
).
[32]
G. Jan
Daniel
,
Scattering HCl Molecules from Au(111) and Ag(111) Surface,
Lausanne
:
EPFL
, (
2019
).
[33]
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
[34]
G.
Kresse
and
J.
Furthmüller
,
Comp. Mater. Sci.
6
,
15
(
1996
).
[35]
Y. K.
Zhang
and
W. T.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
[36]
[37]
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
[38]
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
[39]
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
[40]
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
103
,
10137
(
1995
).
[41]
T. H.
Liu
,
B. N.
Fu
, and
D. H.
Zhang
,
Sci. China Chem.
57
,
147
(
2014
).
[42]
H.
Ueta
,
L.
Chen
,
R. D.
Beck
,
I.
Coloón-Diaz
, and
B.
Jackson
,
Phys. Chem. Chem. Phys.
15
,
20526
(
2013
).
[43]
P. M.
Hundt
,
B.
Jiang
,
M. E.
Van Reijzen
,
H.
Guo
, and
R. D.
Beck
,
Science
344
,
504
(
2014
).
[44]
N.
Gerrits
,
E. W. F.
Smeets
,
S.
Vuckovic
,
A. D.
Powell
,
K.
Doblhoff-Dier
, and
G. J.
Kroes
,
J. Phys. Chem. Lett.
11
,
10552
(
2020
).
[45]
C. L.
Box
,
Y. L.
Zhang
,
R. R.
Yin
,
B.
Jiang
, and
R. J.
Maurer
,
JACS Au
1
,
164
(
2021
).
[46]
N.
Shenvi
,
S.
Roy
, and
J. C.
Tully
,
J. Chem. Phys.
130
,
174107
(
2009
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.