8-Oxoguanine (OG) is the most common oxidatively generated nucleobase damage and can mispair with adenine (A) in Hoogsteen mode during replication. Besides introducing the G·C→T·A transversion mutation, the OG·A base pair is vulnerable to ionizing radiation and one-electron oxidation owing to the lower ionization and oxidation potentials of OG than natural DNA nucleobases. Herein, we report the formation and collision-induced dissociation (CID) of the radical cation of a model base pair consisting of nucleoside-mimicking 9-methyl-8-oxoguanine (9MOG) and 9-methyladenine (9MA). The [9MOG·9MA]•+ radical cation is formed in the gas phase by redox-separation of electrospray ionization-produced CuII-nucle-obase complexes, and its CID is examined using guided-ion beam tandem mass spectrometry. Measurement included kinetic energy-dependent dissociation product ions and cross sections, from which the product pairs of [9MOG – H] + [9MA+H]+ (major dissociation channel) and 9MOG•+ + 9MA (minor) were detected with 0 K dissociation threshold energies of 1.8 and 1. 65 eV, respectively. The [9MOG·9MA]•+ structures were examined using density functional theory, and important conformations were all featured by complete intra-base pair proton transfer as [9MOG–H]·[9MA+H]+. On the other hand, the production of 9MOG•++9MA in dissociation required a 9MOG•+·9MA intermediate. The results were rationalized by the discovery of a double-well potential that evolves on the reaction potential energy surface of the collisionally activated base pair, leading to the proton-transfer equilibrium of excited ([9MOG–H]·[9MA+H]+)* ⇌ (9MOG•+·9MA)*. The combined experimental and theoretical work provides insight into the less intuitive aspects of this biologically-important, non-canonical base pair, especially its opening upon oxidative and ionization damage.

[1]
J.
Zhou
,
O.
Kostko
,
C.
Nicolas
,
X.
Tang
,
L.
Belau
,
M. S.
de Vries
, and
M.
Ahmed
,
J. Phys. Chem. A
113
,
4829
(
2009
).
[2]
M.
Schwell
and
M.
Hochlaf
,
Top. Curr. Chem.
355
,
155
(
2015
).
[3]
S.
Steenken
and
S. V.
Jovanovic
,
J. Am. Chem. Soc.
119
,
617
(
1997
).
[4]
C. J.
Burrows
and
J. G.
Müller
,
Chem. Rev.
98
1109
(
1998
).
[5]
J.
Cadet
and
P. D.
Mascio
,
8-Oxo-l, 8-Dihydro-2-Deoxyguanosine: A Major DNA Oxidation Product,
Weinheim
:
Wiley-VCH Verlag Gmbh & Co. KGaA
, (
2008
).
[6]
A. M.
Fleming
and
C. J.
Burrows
,
DNA Repair
56
,
75
(
2017
).
[7]
Y.
Ye
,
J. G.
Muller
,
W.
Luo
,
C. L.
Mayne
,
A. J.
Shallop
,
R. A.
Jones
, and
C. J.
Burrows
,
J. Am. Chem. Soc.
125
,
13926
(
2003
).
[8]
J. L.
Ravanat
,
G. R.
Martinez
,
M. H. G.
Medeiros
,
P.
Di Mascio
, and
J.
Cadet
,
Tetrahedron
62
,
10709
(
2006
).
[9]
Y.
Ye
,
J. G.
Muller
, and
C. J.
Burrows
,
J. Org. Chem.
71
,
2181
(
2006
).
[10]
G. R.
Martinez
,
J. L.
Ravanat
,
J.
Cadet
,
M. H. Gennari
de Medeiros
, and
P.
Di Mascio
,
J. Mass Spectrom.
42
,
1326
(
2007
).
[11]
S.
Raoul
,
M.
Berger
,
G. W.
Buchko
,
P. C.
Joshi
,
B.
Morin
,
M.
Weinfeld
, and
J.
Cadet
,
J. Chem. Soc., Perkin Trans.
2
,
371
(
1996
).
[12]
J.
Cadet
,
T.
Douki
,
D.
Gasparutto
, and
J. L.
Ravanat
,
Mutation Res.
531
,
5
(
2003
).
[13]
J.
Cadet
,
M.
Berger
,
G. W.
Buchko
,
P. C.
Joshi
,
S.
Raoul
, and
J. L.
Ravanat
,
J. Am. Chem. Soc.
116
,
7403
(
1994
).
[14]
[15]
J.
Cadet
and
J. R.
Wagner
,
Arch. Biochem. Biophys.
557
,
47
(
2014
).
[16]
H.
Sies
,
Oxidative Stress,
London
:
Academie Press
, (
1985
).
[17]
S.
Boiteux
and
J. P.
Radicella
,
Biochimie
81
,
59
(
1999
).
[18]
F.
Prat
,
K. N.
Houk
, and
C. S.
Foote
,
J. Am. Chem. Soc.
120
,
845
(
1998
).
[19]
S.
Steenken
,
S. V.
Jovanovic
,
M.
Bietti
, and
K.
Bernhard
,
J. Am. Chem. Soc.
122
,
2373
(
2000
).
[20]
S.
Shibutani
,
M.
Takeshita
, and
A. P.
Grollman
,
Nature
349
,
431
(
1991
).
[21]
P. M.
Gannett
and
T. P.
Sura
,
Chem. Res. Toxicol.
6
,
690
(
1993
).
[22]
G. W.
Hsu
,
M.
Ober
,
T.
Carell
, and
L. S.
Beese
,
Nature
431
,
217
(
2004
).
[23]
L. G.
Brieba
,
B. F.
Eichman
,
R. J.
Kokoska
,
S.
Doublié
,
T. A.
Kunkel
, and
T.
Ellenberger
,
EMBO J.
23
,
3452
(
2004
).
[24]
W. A.
Beard
,
V. K.
Batra
, and
S. H.
Wilson
,
Mutât. Res. Genet. Toxicol. Environ. Mutagen.
703
,
18
(
2010
).
[25]
V. K.
Batra
,
D. D.
Shock
,
W. A.
Beard
,
C. E.
McKenna
, and
S. H.
Wilson
,
Proc. Natl. Acad. Sci. USA
109
,
113
(
2012
).
[26]
J.
Reynisson
and
S.
Steenken
,
J. Mol. Struct.: Theochem
723
,
29
(
2005
).
[27]
S. J.
Culp
,
B. P.
Cho
,
F. F.
Kadlubar
, and
F. E.
Evans
,
Chem. Res. Toxicol.
2
,
416
(
1989
).
[28]
K. E.
McAuley-Hecht
,
G. A.
Leonard
,
N. J.
Gibson
,
J. B.
Thomson
,
W. P.
Watson
,
W. N.
Hunter
, and
T.
Brown
,
Biochemistry
33
,
10266
(
1994
).
[29]
S.
Kumar
,
B. J.
Lamarche
, and
M. D.
Tsai
,
Biochemistry
46
,
3814
(
2007
).
[30]
A.
Irimia
,
R. L.
Eoff
,
F. P.
Guengerich
, and
M.
Egli
,
J. Biol. Chem.
284
,
22467
(
2009
).
[31]
K. N.
Kirouac
and
H.
Ling
,
Proc. Natl. Acad. Sci. USA
108
,
3210
(
2011
).
[32]
E. D.
Larson
,
K.
lams
, and
J. T.
Drummond
,
DNA Repair
2
,
1199
(
2003
).
[33]
S. D.
Bruner
,
D. P. G.
Norman
, and
G. L.
Verdine
,
Nature
403
,
859
(
2000
).
[34]
M.
Hollstein
,
B.
Shomer
,
M.
Greenblatt
,
T.
Soussi
,
E.
Hovig
,
R.
Montesano
, and
C. C.
Harris
,
Nucleic Acids Res.
24
,
141
(
1996
).
[35]
A. M.
Fleming
,
J. G.
Muller
,
A. C.
Dlouhy
, and
C. J.
Burrows
,
J. Am. Chem. Soc.
134
,
15091
(
2012
).
[36]
[37]
K.
Kawai
,
Y.
Osakada
, and
T.
Majima
,
ChemPhysChem
10
,
1766
(
2009
).
[38]
Y.
Fang
and
J.
Liu
,
J. Phys. Chem. A
113
,
11250
(
2009
).
[39]
L.
Feketeová
,
E.
Yuriev
,
J. D.
Orbell
,
G. N.
Khairallah
, and
R. A. J.
O’Hair
,
Int. J. Mass Spectrom.
304
,
74
(
2011
).
[40]
P.
Cheng
and
D. K.
Bohme
,
J. Phys. Chem. B
111
,
11075
(
2007
).
[41]
Y.
Sun
,
M. M.
Moe
, and
J.
Liu
,
Phys. Chem. Chem. Phys.
22
,
14875
(
2020
).
[42]
M. M.
Moe
,
J.
Benny
, and
J.
Liu
,
Phys. Chem. Chem. Phys.
24
,
9263
(
2022
).
[43]
M. M.
Moe
,
M.
Tsai
, and
J.
Liu
,
ChemPhysChem
24
,
e202300511
(
2023
).
[44]
R. K. O.
Sigel
,
E.
Freisinger
, and
B.
Lippert
,
J. Biol. Inorg. Chem.
5
,
287
(
2000
).
[45]
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
83
,
166
(
1985
).
[46]
P. B.
Armentrout
,
Int. J. Mass Spectrom.
200
,
219
(
2000
).
[47]
P. B.
Armentrout
,
J. Anal. At. Spectrom.
19
,
571
(
2004
).
[48]
C.
Rebick
and
R. D.
Levine
,
J. Chem. Phys.
58
,
3942
(
1973
).
[49]
R. D.
Levine
and
R. B.
Bernstein
,
Molecular Reaction Dynamics and Chemical Reactivity,
New York
:
Oxford University Press, (1987
).
[50]
J.
Liu
,
B.
van Devener
, and
S. L.
Anderson
,
J. Chem. Phys.
116
,
5530
(
2002
).
[51]
M. M.
Moe
,
J.
Benny
,
Y.
Sun
, and
J.
Liu
,
Phys. Chem. Chem. Phys.
23
,
9365
(
2021
).
[52]
P. J.
Chantry
,
J. Chem. Phys.
55
,
2746
(
1971
).
[53]
C.
Lifshitz
,
R. L. C.
Wu
,
T. O.
Tiernan
, and
D. T.
Terwilliger
,
J. Chem. Phys.
68
,
247
(
1978
).
[54]
M. B.
Sowa-Resat
,
P. A.
Hintz
, and
S. L.
Anderson
,
J. Phys. Chem.
99
10736
(
1995
).
[55]
M. T.
Rodgers
,
K. M.
Ervin
, and
P. B.
Armentrout
,
J. Chem. Phys.
106
,
4499
(
1997
).
[56]
R. A.
Marcus
,
J. Chem. Phys.
20
,
359
(
1952
).
[57]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16,
Wallingford, CT
:
Gaussian Inc
., (
2016
).
[58]
A.
Kumar
and
M. D.
Sevilla
,
J. Phys. Chem. B
118
,
5453
(
2014
).
[59]
I. M.
Alecu
,
J.
Zheng
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
6
2872
(
2010
).
[60]
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
1873
(
1994
).
[61]
Y.
Sun
,
M. M.
Moe
, and
J.
Liu
,
Phys. Chem. Chem. Phys.
22
24986
(
2020
).
[62]
W.
Lu
and
J.
Liu
, Phys.
Chem. Chem. Phys.
18
32222
(
2016
).
[63]
S.
Wei
,
Z.
Zhang
,
S.
Liu
, and
Y.
Wang
,
New J. Chem.
45
,
11202
(
2021
).
[64]
G.
Kampf
,
L. E.
Kapinos
,
R.
Griesser
,
B.
Lippert
, and
H.
Sigel
,
J. Chem. Soc., Perkin Trans.
2
1320
(
2002
).
[65]
T. R.
Harkins
and
H.
Freiser
, J.
Am. Chem. Soc.
80
1132
(
1958
).
[66]
C.
Larriba
and
C. J. Hogan
Jr
.,
J. Comput. Phys.
251
344
(
2013
).
[67]
C.
Larriba-Andaluz
and
C. J. Hogan
Jr
.,
J. Chem. Phys.
141
,
194107
(
2014
).
[68]
U.
Dornberger
,
M.
Leijon
, and
H.
Fritzsche
,
J. Biol. Chem.
274
6957
(
1999
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.