Searching the global minimum (GM) structures of metal clusters is of great importance in cluster science. Very recently, the global optimization method based on deep neural network combined with transfer learning (DNN-TL) was developed to improve the efficiency of optimizing the GM structures of metal clusters by greatly reducing the number of samples to train the DNN. Aiming to further enhance the sampling efficiency of the potential energy surface and the global search ability of the DNN-TL method, herein, an advanced global optimization method by embedding genetic algorithm (GA) into the DNN-TL method (DNN-TL-GA) is proposed. In the case of the global optimization of Ptn (n=9–15) clusters, the DNN-TL-GA method requires only a half number of samples at most with respect to the DNN-TL method to find the GM structures. Meanwhile, the DNN-TL-GA method saves about 70%-80% of computational costs, suggesting the significant improved efficiency of global search ability. There are much more samples distributed in the area of the potential energy surface with low energies for DNN-TL-GA (25% for Pt14) than for DNN-TL (<1% for Pt14). The success of the DNNTL-GA method for global optimization is evidenced by finding unprecedented GM structures of Pt16 and Pt17 clusters.

[1]
M. J.
Piotrowski
,
P.
Piquini
, and
J. L. F.
Da Silva
,
Phys. Rev. B
81
,
155446
(
2010
).
[2]
N. B.
Singh
and
U.
Sarkar
,
J. Mol. Model.
20
,
2537
(
2014
).
[3]
V.
Fung
and
D. E.
Jiang
,
J. Phys. Chem. C
121
,
10796
(
2017
).
[4]
R.
Li
,
M.
Odunlami
and
P.
Carbonnière
,
Comput. Theor. Chem.
1107
,
136
(
2017
).
[5]
L. H.
Mou
,
G. D.
Jiang
,
Z. Y.
Li
, and
S. G.
He
,
Chin. J. Chem. Phys.
33
,
507
(
2020
).
[6]
P. L.
Rodríguez-Kessler
,
A. R.
Rodríguez-Domínguez
, and
A.
Muñoz-Castro
,
Phys. Chem. Chem. Phys.
23
,
4935
(
2021
).
[7]
Q. Q.
Yan
,
X. Y.
Zhao
,
T.
Zhang
, and
S. D.
Li
,
ChemPhysChem
24
,
e202200947
(
2023
).
[8]
R. H.
Ouyang
,
Y.
Xie
, and
D. E.
Jiang
,
Nanoscale
7
,
14817
(
2015
).
[9]
L. P.
Han
,
G. D.
Jiang
,
X. N.
Li
, and
S. G.
He
,
Chem. Phys. Lett.
785
,
139118
(
2021
).
[10]
Y. F.
Zhao
,
X.
Chen
, and
J.
Li
,
Nano Res.
10
,
3407
(
2017
).
[11]
B.
Hartke
,
WIREs Comput. Mol. Sci.
1
,
879
(
2011
).
[12]
J. B. A.
Davis
,
A.
Shayeghi
,
S. L.
Horswell
, and
R. L.
Johnston
,
Nanoscale
7
,
14032
(
2015
).
[13]
X. L.
Ding
,
Z. Y.
Li
,
J. H.
Meng
,
Y. X.
Zhao
, and
S. G.
He
,
J. Chem. Phys.
137
,
214311
(
2012
).
[14]
R. L.
Johnston
,
Dalton Trans.
32
,
4193
(
2003
).
[15]
C.
Priest
,
Q.
Tang
, and
D. E.
Jiang
,
J. Phys. Chem. A
119
,
8892
(
2015
).
[16]
D. E.
Jiang
and
M.
Walter
,
Phys. Rev. B
84
,
193402
(
2011
).
[17]
D. J.
Wales
and
H. A.
Scheraga
,
Science
285
,
1368
(
1999
).
[18]
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
[19]
J. G.
Wang
,
L.
Ma
,
J. J.
Zhao
, and
K. A.
Jackson
,
J. Chem. Phys.
130
,
214307
(
2009
).
[20]
L. T.
Shi
,
Z. Q.
Wang
,
C. E.
Hu
,
Y.
Cheng
,
J.
Zhu
, and
G. F.
Ji
,
Chem. Phys. Lett.
721
,
74
(
2019
).
[21]
J.
Lv
,
Y. C.
Wang
,
L.
Zhu
, and
Y. M.
Ma
,
J. Chem. Phys.
137
,
084104
(
2012
).
[22]
S. T.
Call
,
D. Y.
Zubarev
, and
A. I.
Boldyrev
,
J. Comput. Chem.
28
,
1177
(
2007
).
[23]
C.
Shang
and
Z. P.
Liu
,
J. Chem. Theory Comput.
9
,
1838
(
2013
).
[24]
G. F.
Wei
and
Z. P.
Liu
,
J. Chem. Theory Comput.
12
,
4698
(
2016
).
[25]
K.
Doll
,
J. C.
Schön
, and
M.
Jansen
,
J. Chem. Phys.
133
,
024107
(
2010
).
[26]
R.
Huang
,
J. X.
Bi
,
L.
Li
, and
Y. H.
Wen
,
J. Chem. Inf. Model.
60
,
2219
(
2020
).
[27]
X.
Chen
,
M. S.
Jørgensen
,
J.
Li
, and
B.
Hammer
,
J. Chem. Theory Comput.
14
,
3933
(
2018
).
[28]
A.
Khorshidi
and
A. A.
Peterson
,
Comput. Phys. Commun.
207
,
310
(
2016
).
[29]
J.
Behler
,
Int. J. Quantum Chem.
115
,
1032
(
2015
).
[30]
C. M.
Handley
and
P. L. A.
Popelier
,
J. Phys. Chem. A
114
,
3371
(
2010
).
[31]
H. C.
Zhai
and
A. N.
Alexandrova
,
J. Chem. Theory Comput.
12
,
6213
(
2016
).
[32]
L. W.
Sai
,
L.
Fu
,
Q. Y.
Du
, and
J. J.
Zhao
,
Front. Phys.
18
,
13306
(
2022
).
[33]
Q.
Yang
,
G. D.
Jiang
, and
S. G.
He
,
J. Chem. Theory Comput.
19
,
1922
(
2023
).
[34]
S. D.
Huang
,
C.
Shang
,
X. J.
Zhang
, and
Z. P.
Liu
,
Chem. Sci.
8
,
6327
(
2017
).
[35]
S. K.
Ignatov
,
A. G.
Razuvaev
,
A. S.
Loginova
, and
A. E.
Masunov
,
J. Phys. Chem. C
123
,
29024
(
2019
).
[36]
E.
Jimenez-Izal
,
H. C.
Zhai
,
J. Y.
Liu
, and
A. N.
Alexandrova
,
ACS Catal.
8
,
8346
(
2018
).
[37]
E.
Hernández
,
V.
Bertin
,
J.
Soto
,
A.
Miralrio
, and
M.
Castro
,
J. Phys. Chem. A
122
,
2209
(
2018
).
[38]
H.
Yamamoto
,
K.
Miyajima
,
T.
Yasuike
, and
F.
Mafuné
,
J. Phys. Chem. A
117
,
12175
(
2013
).
[39]
L. L.
Chng
,
N.
Erathodiyil
, and
J. Y.
Ying
,
Acc. Chem. Res.
46
,
1825
(
2013
).
[40]
V.
Kumar
and
Y.
Kawazoe
,
Phys. Rev. B
77
,
205418
(
2008
).
[41]
C. Y.
Jia
,
Y. J.
Zhang
,
X. J.
Wang
,
W. H.
Zhong
,
O. V.
Prezhdo
,
Y.
Luo
, and
J.
Jiang
,
J. Mater. Chem. A
8
,
12485
(
2020
).
[42]
T.
Tong
,
M.
Douthwaite
,
L.
Chen
,
R.
Engel
,
M. B.
Conway
,
W. J.
Guo
,
X. P.
Wu
,
X. Q.
Gong
,
Y. Q.
Wang
,
D. J.
Morgan
,
T.
Davies
,
C. J.
Kiely
,
L. W.
Chen
,
X.
Liu
, and
G. J.
Hutchings
,
ACS Catal.
13
,
1207
(
2023
).
[43]
S. Y.
Lv
,
Q. Y.
Liu
,
Y. X.
Zhao
, and
S. G.
He
,
J. Am. Chem. Soc.
143
,
3951
(
2021
).
[44]
S. H.
Ou
,
J. J.
Chen
,
X. N.
Li
,
T. M.
Ma
, and
S. G.
He
,
J. Phys. Chem. C
124
,
8869
(
2020
).
[45]
G. D.
Jiang
,
L. H.
Mou
,
J. J.
Chen
,
Z. Y.
Li
, and
S. G.
He
,
J. Phys. Chem. A
124
,
7749
(
2020
).
[46]
C. Y.
Zhu
,
R. H.
Byrd
,
P. H.
Lu
, and
J.
Nocedal
,
ACM Trans. Math. Softw.
23
,
550
(
1997
).
[47]
J. M.
Guevara-Vela
,
T.
Rocha-Rinza
,
P. L.
Rodríguez-Kessler
, and
A.
Muñoz-Castro
,
Phys. Chem. Chem. Phys.
25
,
28835
(
2023
).
[48]
J.
Kübler
,
K. H.
Höck
,
J.
Sticht
, and
A. R.
Williams
,
J. Appl. Phys.
63
,
3482
(
1988
).
[49]
P.
Ruiz-Díaz
,
J. L.
Ricardo-Chávez
,
J.
Dorantes-Dávila
, and
G. M.
Pastor
,
Phys. Rev. B
81
,
224431
(
2010
).
[50]
A. S.
Chaves
,
G. G.
Rondina
,
M. J.
Piotrowski
,
P.
Tereshchuk
, and
J. L. F.
Da Silva
,
J. Phys. Chem. A
118
,
10813
(
2014
).
[51]
M.
Khatun
,
R. S.
Majumdar
, and
A.
Anoop
,
Front. Chem.
7
,
644
(
2019
).
[52]
W. H.
Qi
and
M. P.
Wang
,
J. Mater. Sci. Lett.
21
,
1743
(
2002
).
[53]
G. N.
Derry
and
J. Z.
Zhang
,
Phys. Rev. B
39
,
1940
(
1989
).
[54]
A.
Marijnissen
,
J. J.
ter Meulen
,
P. A.
Hackett
, and
B.
Simard
,
Phys. Rev. A
52
,
2606
(
1995
).
[55]
N. D.
Gibson
,
B. J.
Davies
, and
D. J.
Larson
,
J. Chem. Phys.
98
,
5104
(
1993
).
[56]
A. G.
Yohannes
,
K.
Fink
, and
I.
Kondov
,
Nanoscale Adv.
4
,
4554
(
2022
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.