The photodissociation dynamics of small (H2O)n+ (n=2–5) clusters have been studied at 308 nm using a high resolution cryogenic cylindrical ion trap velocity map imaging spectrometer. Time-of-flight mass spectra and images of ionic photofragments are recorded. (H2O)2+ clusters dissociate to yield H3O+ and H2O+ photofragments, indicating the presence of both proton-transferred (H3O+-OH) and hemibonded (H2O-OH2)+ structures for the dimer cluster. (H2O)n+ (n=3–5) clusters prevailingly dissociate to the H+(H2O)n–2, …,1 photofragments by losing both of OH and H2O components, and the (H2O)5+ cluster shows an additional channel to produce H+(H2O)4 by only losing OH. The former suggests the (H2O)n–2H3O+OH structures for the (H2O)n+ (n=3–5) clusters, while the latter suggests in (H2O)5+ that, the H3O+ core and OH are separated by H2O. The results elucidate the structure progresses of small (H2O)n+ clusters. The experimental images yield negative and small values for the anisotropy parameters of photofragments, indicating that (H2O)n+ (n=2–5) clusters undergo vertical electronic transitions upon photon absorption followed by slow dissociation, and lead to highly internally excited photofragments.

[1]
W. M.
Latimer
and
W. H.
Rodebush
,
J. Am. Chem. Soc.
42
,
1419
(
1920
).
[2]
L.
Pauling
,
Proc. Natl. Acad. Sci.
14
,
359
(
1928
).
[3]
[4]
[5]
S.
Schemer
,
Hydrogen Bonding: A Theoretical Perspective,
New York
:
Oxford University Press
, (
1997
).
[6]
G. A.
Jeffrey
and
W.
Saenger
,
Hydrogen Bonding in Biological Structures,
Heidelberg
:
Springer-Verlag Berlin
, (
1991
).
[7]
H.
Shinohara
,
N.
Nishi
, and
N.
Washida
,
J. Chem. Phys.
84
,
5561
(
1986
).
[8]
K.
Norwood
,
A.
Ali
, and
C. Y.
Ng
,
J. Chem. Phys.
95
,
8029
(
1991
).
[9]
P. P.
Radi
,
P.
Beaud
,
D.
Franzke
,
H. M.
Frey
,
T.
Gerber
,
B.
Mischler
, and
A. P.
Tzannis
,
J. Chem. Phys.
Ill
,
512
(
1999
).
[10]
H.
Shiromaru
,
H.
Shinohara
,
N.
Washida
,
H. S.
Yoo
, and
K.
Kimura
,
Chem. Phys. Lett.
141
,
7
(
1987
).
[11]
L.
Angel
and
A.
St ace
,
Chem. Phys. Lett.
345
,
277
(
2001
).
[12]
O.
Kostko
,
L.
Belau
,
K. R.
Wilson
, and
M.
Ahmed
,
J. Phys. Chem. A
112
,
9555
(
2008
).
[13]
K.
Mizuse
,
J. L.
Kuo
, and
A.
Fujii
,
Chem. Sci.
2
,
868
(
2011
).
[14]
G. H.
Gardenier
,
M. A.
Johnson
, and
A. B.
McCoy
,
J. Phys. Chem. A
113
,
4772
(
2009
).
[15]
E.
Kamarchik
,
O.
Kostko
,
J. M.
Bowman
,
M.
Ahmed
, and
A. I.
Krylov
,
J. Chem. Phys.
132
,
194311
(
2010
).
[16]
H.
Do
and
N. A.
Besley
,
J. Phys. Chem. A
117
,
5385
(
2013
).
[17]
J. D.
Herr
,
J.
Talbot
, and
R. P.
Steele
,
J. Phys. Chem. A
119
,
752
(
2015
).
[18]
E. P.
Lu
,
P. R.
Pan
,
Y. C.
Li
,
M. K.
Tsai
, and
J. L.
Kuo
,
Phys. Chem. Chem. Phys.
16
,
18888
(
2014
).
[19]
A.
Ünal
and
U.
Bozkaya
,
Int. J. Quantum Chem.
120
,
e26100
(
2020
).
[20]
H.
Tachikawa
,
J. Comput. Chem.
38
,
1503
(
2017
).
[21]
S.
Hartweg
,
G. A.
Garcia
, and
L.
Nahon
,
J. Phys. Chem. A
125
,
4882
(
2021
).
[22]
E.
Vogt
and
H. G.
Kjaergaard
,
Annu. Rev. Phys. Chem.
73
,
209
(
2022
).
[23]
J. W.
Shin
,
N. I.
Hammer
,
E. G.
Diken
,
M. A.
Johnson
,
R. S.
Walters
,
T. D.
Jaeger
,
M. A.
Duncan
,
R. A.
Christie
, and
K. D.
Jordan
,
Science
304
,
1137
(
2004
).
[24]
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
, and
N.
Mikami
,
Science
304
,
1134
(
2004
).
[25]
K.
Mizuse
and
A.
Fujii
,
J. Phys. Chem. Lett.
2
,
2130
(
2011
).
[26]
Q.
Cheng
,
F. A.
Evangelista
,
A. C.
Simmonett
,
Y.
Yamaguchi
, and
H. F. I.
Schaefer
,
J. Phys. Chem. A
113
,
13779
(
2009
).
[27]
Z.
Hua
,
S.
Feng
,
Z.
Zhou
,
H.
Liang
,
Y.
Chen
, and
D.
Zhao
,
Rev. Sci. Instrum.
90
,
013101
(
2019
).
[28]
Z.
Hua
,
Y.
Zhao
,
Y.
Li
,
G.
Hu
,
Y.
Chen
, and
D.
Zhao
,
Chin. J. Chem. Phys.
34
,
81
(
2021
).
[29]
H.
Liang
,
Z.
Zhou
,
Z.
Hua
,
Y.
Zhao
,
S.
Feng
,
Y.
Chen
, and
D.
Zhao
,
J. Phys. Chem. A
123
,
4609
(
2019
).
[30]
H.
Liang
,
Z.
Zhou
,
Z.
Hua
,
Y.
Zhao
,
S.
Feng
,
Y.
Chen
, and
D.
Zhao
,
Chin. J. Chem. Phys.
32
,
531
(
2019
).
[31]
Z.
Zhou
,
H.
Liang
,
Z.
Hua
,
S.
Feng
,
D.
Zhao
, and
Y.
Chen
,
J. Chem. Phys.
150
,
226101
(
2019
).
[32]
Z.
Zhou
,
S.
Feng
,
Z.
Hua
,
Z.
Li
,
Y.
Chen
, and
D.
Zhao
,
J. Chem. Phys.
152
,
134304
(
2020
).
[33]
Z.
Hua
,
Y.
Zhao
,
G.
Hu
,
S.
Feng
,
Q.
Zhang
,
Y.
Chen
, and
D.
Zhao
,
J. Phys. Chem. Lett.
12
,
4012
(
2021
).
[34]
A. T. J. B.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
).
[35]
C. R.
Gebhardt
,
T. P.
Rakitzis
,
P. C.
Samartzis
,
V.
Ladopoulos
, and
T. N.
Kitsopoulos
,
Rev. Sci. Instrum.
72
,
3848
(
2001
).
[36]
J. J.
Lin
,
J.
Zhou
,
W.
Shiu
, and
K.
Liu
,
Rev. Sci. Instrum.
74
,
2495
(
2003
).
[37]
D.
Townsend
,
M. P.
Minitti
, and
A. G.
Suits
,
Rev. Sci. Instrum.
74
,
2530
(
2003
).
[38]
J. O. F.
Thompson
,
C.
Amarasinghe
,
C. D.
Foley
, and
A. G.
Suits
,
J. Chem. Phys.
147
,
013913
(
2017
).
[39]
H.
Tachikawa
,
Phys. Chem. Chem. Phys.
13
,
11206
(
2011
).
[40]
O.
Svoboda
,
D.
Hollas
,
M.
Onák
, and
P.
Slavíek
,
Phys. Chem. Chem. Phys.
15
,
11531
(
2013
).
[41]
Y.
Nakai
,
H.
Hidaka
,
N.
Watanabe
, and
T. M.
Kojima
,
J. Chem. Phys.
144
,
224306
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.