Excitation of vibration plays an important role in the photodissociation dynamics of molecules and ions. Experiments on the photodissociation dynamics of molecular ions via well-defined excited vibrational states present a formidable challenge, particularly when it comes to the selective preparation of ions at the vibrational combination level. Here, using time-sliced velocity map ion imaging, the photodissociation of H2S+ via A2A1(v1=1, v2=8, v3=0, K=1) state leading to S+(4S) and H2 products was investigated. The excited H2S+ cations were prepared by multiphoton ionization of H2S, followed by resonant excitation. Images of S+ ions were captured at six wavelengths ranging from 357.02 nm to 358.38 nm. From the ion images, the total kinetic energy release distributions and rotational state-specific anisotropy parameters were derived. Notably, repeatedly reversed branching ratios of the H2 (J=1) and H2 (J=3) rotational states were observed in a narrow photolysis energy region. This behavior was totally different from the results in recent studies on the photodissociation of HS+ where only a single vibrational mode v2 was excited for parent ions in A2A1(v1, v2, v3) states. The present study indicates that potential vibrational synergy effect was observed in the photodissociation dynamics of H2S+ when the parent ions were excited in a combinational vibrational mode.

[1]
W.
Jaeschke
,
H.
Claude
, and
J.
Herrmann
,
J. Geo-phys. Res. Oceans
85
,
5639
(
1980
).
[2]
U.
Calmonte
,
K.
Altwegg
,
H.
Balsiger
,
J. J.
Berthelier
,
A.
Bieler
,
G.
Cessateur
,
F.
Dhooghe
,
E. F.
van Dishoeck
,
B.
Fiethe
,
S. A.
Fuselier
,
S.
Gasc
,
T. I.
Gombosi
,
M.
Hassig
,
L.
Le Roy
,
M.
Rubin
,
T.
Semon
,
C. Y.
Tzou
, and
S. F.
Wampfler
,
Mon. Not. R. Astron. Soc.
462
,
S253
(
2016
).
[3]
J. R.
Goicoechea
,
A.
Aguado
,
S.
Cuadrado
,
O.
Roncero
,
J.
Pety
,
E.
Bron
,
A.
Fuente
,
D.
Riquelme
,
E.
Chapillon
,
C.
Herrera
, and
C. A.
Duran
,
Astron. Astrophys.
647
,
A10
(
2021
).
[4]
T. H. G.
Vidal
,
J. C.
Loison
,
A. Y.
Jaziri
,
M.
Ruaud
,
P.
Gratier
, and
V.
Wakelam
,
Mon. Not. R. Astron. Soc.
469
,
435
(
2017
).
[5]
W. J.
Morgan
,
X.
Huang
,
H. F. Schaefer
III
, and
T. J.
Lee
,
Mon. Not. R. Astron. Soc.
480
,
3483
(
2018
).
[6]
R. N.
Dixon
,
G.
Duxbury
,
J.
Rostas
, and
M.
Horani
,
Mol. Phys.
22
,
977
(
1971
).
[7]
D. M.
Hirst
,
J. Chem. Phys.
118
,
9175
(
2003
).
[8]
A. D.
Webb
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
127
,
224307
(
2007
).
[9]
A. D.
Webb
,
N.
Kawanaka
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
127
,
224308
(
2007
).
[10]
H. B.
Chang
and
M. B.
Huang
,
Theor. Chem. Acc.
122
,
189
(
2009
).
[11]
S.
Han
,
T. Y.
Kang
, and
S. K.
Kim
,
J. Chem. Phys.
132
,
124304
(
2010
).
[12]
G.
Duxbury
,
C.
Jungen
,
A.
Alijah
,
J. P.
Maier
, and
D.
Klapstein
,
Mol. Phys.
112
,
3072
(
2014
).
[13]
P.
Baltzer
,
L.
Karlsson
,
M.
Lundqvist
,
B.
Wannberg
,
D. M. P.
Holland
, and
M. A.
Macdonald
,
Chem. Phys.
195
,
403
(
1995
).
[14]
M.
Hochlaf
,
K. M.
Weitzel
, and
C. Y.
Ng
,
J. Chem. Phys.
120
,
6944
(
2004
).
[15]
J. H. D.
Eland
,
Int. J. Mass. Spectrom.
31
,
161
(
1979
).
[16]
F.
Fiquet-fayard
and
P. M.
Guyon
,
Mol. Phys.
11
,
17
(
1966
).
[17]
H.
Sakai
,
S.
Yamabe
,
T.
Yamabe
,
K.
Fukui
, and
H.
Kato
,
Chem. Phys. Lett.
25
,
541
(
1974
).
[18]
G.
Hirsch
and
P. J.
Bruna
,
Int. J. Mass. Spectrom.
36
,
37
(
1980
).
[19]
C.
Jungen
and
A. J.
Merer
,
Mol. Phys.
40
,
1
(
1980
).
[20]
W. Z.
Li
and
M. B.
Huang
,
Chem. Phys.
315
,
133
(
2005
).
[21]
Y. Z.
Song
,
Y.
Zhang
,
S. B.
Gao
,
Q. T.
Meng
,
C. K.
Wang
, and
M. Y.
Ballester
,
Mol. Phys.
116
,
129
(
2018
).
[22]
G.
Duxbury
,
C.
Jungen
, and
J.
Rostas
,
Mol. Phys.
48
,
719
(
1983
).
[23]
W. T.
Chen
,
L.
Zhang
,
D. F.
Yuan
,
Y.
Chang
,
S. R.
Yu
,
S. W.
Wang
,
T.
Wang
,
B.
Jiang
,
K. J.
Yuan
,
X. M.
Yang
, and
X. A.
Wang
,
J. Phys. Chem. Lett.
10
,
4783
(
2019
).
[24]
Y.
Chang
,
F.
An
,
Z. C.
Chen
,
Z. J.
Luo
,
Y. R.
Zhao
,
X. X.
Hu
,
J. Y.
Yang
,
W. Q.
Zhang
,
G. R.
Wu
,
D. Q.
Xie
,
K. J.
Yuan
, and
X. M.
Yang
,
Nat. Commun.
12
,
6303
(
2021
).
[25]
Z. X.
Li
,
M.
Zhao
,
T.
Xie
,
Z. J.
Luo
,
Y.
Chang
,
G. K.
Cheng
,
J. Y.
Yang
,
Z. C.
Chen
,
W. Q.
Zhang
,
G. R.
Wu
,
X. G.
Wang
,
K. J.
Yuan
, and
X. M.
Yang
,
J. Phys. Chem. Lett.
12
,
844
(
2021
).
[26]
Z. W.
Luan
,
Y. L.
Fu
,
Y. X.
Tan
,
Y. L.
Wang
,
B. K.
Shan
,
J.
Li
,
X. G.
Zhou
,
W. T.
Chen
,
L. J.
Liu
,
B. A.
Fu
,
D. H.
Zhang
,
X. M.
Yang
, and
X. A.
Wang
,
J. Phys. Chem. Lett.
13
,
8157
(
2022
).
[27]
Y. R.
Zhao
,
J. J.
Chen
,
Z. J.
Luo
,
Z. X.
Li
,
S. K.
Yang
,
Y.
Chang
,
F.
An
,
Z. C.
Chen
,
J. Y.
Yang
,
G. R.
Wu
,
W. Q.
Zhang
,
X. X.
Hu
,
D. Q.
Xie
,
H. B.
Ding
,
K. J.
Yuan
, and
X. M.
Yang
,
J. Phys. Chem. Lett.
13
,
9786
(
2022
).
[28]
Y.
Chang
,
Y. L.
Fu
,
Z. C.
Chen
,
Z. J.
Luo
,
Y. R.
Zhao
,
Z. X.
Li
,
W. Q.
Zhang
,
G. R.
Wu
,
B. A.
Fu
,
D. H.
Zhang
,
M. N. R.
Ashfold
,
X. M.
Yang
, and
K. J.
Yuan
,
Chem. Sci.
14
,
8255
(
2023
).
[29]
Z.
Lu
,
Y. C.
Chang
,
Q. Z.
Yin
,
C. Y.
Ng
, and
W. M.
Jackson
,
Science
346
,
61
(
2014
).
[30]
X. D.
Wang
,
X. F.
Gao
,
C. J.
Xuan
, and
S. X.
Tian
,
Nat. Chem.
8
,
258
(
2016
).
[31]
Z. W.
Luan
,
Y. L.
Fu
,
Y. X.
Tan
,
Y. L.
Wang
,
A. W.
Liu
,
T.
Wang
,
X. G.
Zhou
,
B. N.
Fu
,
D. H.
Zhang
,
D. F.
Yuan
,
X. G.
Wang
, and
X. M.
Yang
,
Chin. J. Chem. Phys.
36
,
289
(
2023
).
[32]
J.
Steadman
and
T.
Baer
,
J. Chem. Phys.
89
,
5507
(
1988
).
[33]
M. N. R.
Ashfold
,
W. S.
Hartree
,
A. V.
Salvato
,
B.
Tutcher
, and
A.
Walker
,
J. Chem. Soc. Faraday trans.
86
,
2027
(
1990
).
[34]
J. J.
Lin
,
J. G.
Zhou
,
W. C.
Shiu
, and
K. P.
Liu
,
Rev. Sci. Instru.
74
,
2495
(
2003
).
[35]
J. M.
Zhou
,
Y. R.
Zhao
,
C. S.
Hansen
,
J. Y.
Yang
,
Y.
Chang
,
Y.
Yu
,
G. K.
Cheng
,
Z. C.
Chen
,
Z. G.
He
,
S. R.
Yu
,
H. B.
Ding
,
W. Q.
Zhang
,
G. R.
Wu
,
D. X.
Dai
,
C. M.
Western
,
M. N. R.
Ashfold
,
K. J.
Yuan
, and
X. M.
Yang
,
Nat. Commun.
11
,
1547
(
2020
).
[36]
M.
Brouard
,
E. K.
Campbell
,
R.
Cireasa
,
A. J.
Johnsen
, and
W. H.
Yuen
,
J. Chem. Phys.
136
,
044310
(
2012
).
[37]
H. L.
Holmes-Ross
,
R. J.
Valenti
,
H. G.
Yu
,
G. E.
Hall
, and
W. D.
Lawrance
,
J. Chem. Phys.
144
,
044309
(
2016
).
[38]
H. P.
Loock
,
J. Y.
Cao
, and
C. X. W.
Qian
,
Chem. Phys. Lett.
206
,
422
(
1993
).
[39]
A. V.
Demyanenko
,
V.
Dribinski
,
H.
Reisler
,
H.
Meyer
, and
C. X. W.
Qian
,
J. Chem. Phys.
111
,
7383
(
1999
).
[40]
E.
Sakkoula
,
G.
Sharma
,
X. A.
Wang
,
S. W.
North
,
D. H.
Parker
, and
W.
Wei
,
Phys. Chem. Chem. Phys.
24
,
2592
(
2022
).
This content is only available via PDF.
You do not currently have access to this content.