Accurate measurements of the product spin-orbit finne-structure branching ratios are important for understanding the detailed photodissociation dynamics of small molecules. In this study, the atomic spin-orbit fine-structure branching rar tio N(2D5/2)/N(2D3/2) to the dissociation channel N(2D5/2,3/2)+N(2D5/2,3/2) is measured for the c41Σu+(υ=6) and b1Σu+(υ=21) states of 14N2, and the b1Σu+(υ=20) and b1Σu+(υ=21) states of 15N2 by using the vacuum ultraviolet (VUV)pump VUV-probe time-sliced velocity-mapped ion imaging setup. The measurements show that the fine-structure branching ratio N(2D5/2)/N(2D3/2) is independent of the rotational level of the parent molecule (14N2 or 15N2) in each vibronic state, while it does show dependence on the vibronic characteristics. It is ~1.35 for the c41Σu+(υ=6) state of 14N2 and b1Σu+(υ=20) state of 15N2, which are both close to the dissociation threshold N(2D5/2,3/2)+N(2D5/2,3/2); while it becomes ~1.00 for the b1Σu+(υ=21) state of both 14N2 and 15N2, which are relatively far above the dissociation threshold. A possible change from a statistical process near the threshold to a diabatic process far above the threshold might have occurred to be responsible for the observed vibronic dependence of the branching ratio. Detailed informations on the potential energy curves and their mutual couplings near the dissociation threshold are highly desired for understanding the present experimental measurement.

[1]
S. J.
Singer
,
K. F.
Freed
, and
Y. B.
Band
,
Photodissociation of Diatomic Molecules to Open Shell Atoms,
(
1985
).
[2]
S. J.
Singer
,
K. F.
Freed
, and
Y. B.
Band
,
J. Chem. Phys.
79
,
12
(
1983
).
[3]
S. J.
Singer
,
K. F.
Freed
, and
Y. B.
Band
,
J. Chem. Phys.
81
,
7
(
1984
).
[4]
S.
Lee
and
K. F.
Freed
,
J. Chem. Phys.
87
,
10
(
1987
).
[5]
G.
Parlant
and
D. R.
Yarkony
,
J. Chem. Phys.
110
,
1
(
1998
).
[6]
W.
Zhou
,
Y.
Yuan
, and
J.
Zhang
,
J. Chem. Phys.
119
,
19
(
2003
).
[7]
G.
Sun
,
W.
Zhou
,
X.
Zheng
,
Y.
Qin
,
Y.
Song
,
Y.
Yuan
, and
J.
Zhang
,
Mol. Phys.
119
,
1
(
2021
).
[8]
D. J.
Leahy
,
D. L.
Osborn
,
D. R.
Cyr
, and
D. M.
Neumark
,
J. Chem. Phys.
103
,
7
(
1995
).
[9]
H.
Kim
,
K. S.
Dooley
,
G. C.
Groenenboom
, and
S. W.
North
,
Phys. Chem. Chem. Phys.
8
,
25
(
2006
).
[10]
K. S.
Dooley
,
M. P.
Grubb
,
J.
Geidosch
,
M. A.
van Beek
,
G. C.
Groenenboom
, and
S. W.
North
,
Phys. Chem. Chem. Phys.
11
,
23
(
2009
).
[11]
H.
Gao
,
Y.
Song
,
W. M.
Jackson
, and
C. Y.
Ng
,
J. Chem. Phys.
138
,
19
(
2013
).
[12]
P.
Jiang
,
L.
Lu
, and
H.
Gao
,
J. Chem. Phys.
156
,
19
(
2022
).
[13]
P. M.
Regan
,
S. R.
Langford
,
D.
Ascenzi
,
P. A.
Cook
,
A. J.
Orr-Ewing
, and
M. N. R.
Ashfold
,
Phys. Chem. Chem. Phys.
1
,
14
(
1999
).
[14]
J.
Wang
and
Y.
Mo
,
J. Chem. Phys.
150
,
14
(
2019
).
[15]
Y.
Han
,
P.
Wang
, and
Y.
Mo
,
Phys. Rev. A
106
,
1
(
2022
).
[16]
Y.
Li
and
P. Y.
Zhang
,
J. Theor. Comput. Chem.
10
,
06
(
2011
).
[17]
M.
Liu
,
P.
Jiang
,
M.
Cheng
, and
H.
Gao
,
J. Chem. Phys.
155
,
23
(
2021
).
[18]
M.
Liu
,
P.
Jiang
,
L.
Lu
,
T.
Yin
,
L.
Ma
,
M.
Cheng
,
Q. Z.
Yin
, and
H.
Gao
,
Astrophys. J.
923
,
2
(
2021
).
[19]
P.
Jiang
,
L.
Lu
,
M.
Liu
, and
H.
Gao
,
Phys. Chem. Chem. Phys.
24
,
19
(
2022
).
[20]
Y. C.
Chang
,
K.
Liu
,
K. S.
Kalogerakis
,
C. Y.
Ng
, and
W. M.
Jackson
,
J. Phys. Chem. A
123
,
12
(
2019
).
[21]
L.
Lu
,
P.
Jiang
, and
H.
Gao
,
Fundam. Res.
(
2022
). .
[22]
M.
Hochlaf
,
H.
Ndome
,
D.
Hammoutène
, and
M.
Vervloet
,
J. Phys. B: Atom. Mol. Opt. Phys.
43
,
24
(
2010
).
[23]
N.
Gelfand
,
K.
Komarova
,
F.
Remade
, and
R. D.
Levine
,
J. Chem. Phys.
158
,
16
(
2023
).
This content is only available via PDF.
You do not currently have access to this content.